

Stearic Acid Datasheet

4th Edition (Revised in July, 2016)

[Product Information]

Name: Stearic Acid

Catalog No.: CFN93165

Cas No.: 57-11-4

Purity: >=98%

M.F: C₁₈H₃₆O₂

M.W: 284.48

Physical Description: Powder

Synonyms: Cetylacetic acid; Carboxylic acid C18; N-Octadecylic acid.

[Intended Use]

- 1. Reference standards;
- 2. Pharmacological research;
- 3. Food research;
- 4. Synthetic precursor compounds;
- 5. Intermediates & Fine Chemicals;
- 6. Others.

[Source]

The leaves of Trachycarpus fortunei.

[Biological Activity or Inhibitors]

Saturated FFAs, such as palmitic acid and stearic acid, markedly suppressed the

granulosa cell survival in a time- and dose-dependent manner, the suppressive effect of

saturated FFAs on cell survival was caused by apoptosis, as evidenced by DNA ladder

formation and annexin V-EGFP/propidium iodide staining of the cells;these effects of

FFAs on granulosa cell survival may be a possible mechanism for reproductive

abnormalities, such as amenorrhea, which is frequently observed in obese women.[1]

Trans fatty acids (TFAs) intake should be reduced as much as possible because of its

adverse effects on lipids and lipoproteins, the replacement of TFA with stearic acid (STA)

compared with other saturated fatty acids in foods that require solid fats beneficially

affects LDL cholesterol, the primary target for cardiovascular disease (CVD) risk

reduction.[2]

Stearic acid can facilitate hippocampal neurotransmission by enhancing nicotinic ACh

receptor responses via a PKC pathway. [3]

Stearic acid (SA) and palmitic acid (PA) induce apoptosis in testicular Leydig cells by

ceramide production and these apoptotic effects may be a possible mechanism for

reproductive abnormalities in obese men, and arachidonic acid (AA) can partly prevent

the apoptotic effect induced by saturated free fatty acids (FFA.[4]

Stearic acid has the potential to inhibit COX-1 activity, but not COX-2 activity, in the form

of their CoA ester.^[5]

[Solvent]

Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.

[HPLC Method]^[6]

Mobile phase: 0.01 M Sodium dodecyl sulfate-Methanol-Acetonitrile=50:50:6(containing

0.6% phosphoric acid);

Flow rate: 1.0 ml/min;

Column temperature: 25 °C;

The wave length of determination: 254 nm.

[Storage]

2-8°C, Protected from air and light, refrigerate or freeze.

[References]

[1] Mu Y M, Yanase T, Nishi Y, et al. Endocrinology, 2001, 142(8):3590-7.

[2] Hunter J E, Zhang J, Kris-Etherton P M. Am.J. Clin.I Nutr., 2010, 91(1):46-63.

[3] Ohta K, Miyamoto H, Yaguchi T, et al. Mol. Brain Res., 2003, 119(1):83-9.

[4] Lu Z H, Mu Y M, Wang B A, et al. Biochem. Bioph. Res. Co., 2003, 303(4):1002-7.

[5] Fujimoto Y, Yonemura T, Sakuma S. Prostag. Leukotr. Ess., 2008, 78(1):81-4.

[6] Ying X Y, Du Y Z, Shen J, et al. Chinese Journal of Modern Applied Pharmacy, 2009(5):388-90.

[Contact]

Address:

S5-3 Building, No. 111, Dongfeng Rd., Wuhan Economic and Technological Development Zone, Wuhan. Hubei 430056.

China

Email: info@chemfaces.com

Tel: +86-27-84237783
Fax: +86-27-84254680
Web: www.chemfaces.com

Tech Support: service@chemfaces.com