• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Syringaresinol
    Syringaresinol
    Information
    CAS No. 487-35-4 Price $268 / 5mg
    Catalog No.CFN92060Purity>=98%
    Molecular Weight418.4Type of CompoundLignans
    FormulaC22H26O8Physical DescriptionPowder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Istanbul University (Turkey)
  • Universidade da Beira Interior (Germany)
  • University of Illinois (USA)
  • University of Hawaii Cancer Center (USA)
  • Instituto Politécnico de Bragan?a (Portugal)
  • National Cancer Center Research ... (Japan)
  • University of Helsinki (Finland)
  • Fraunhofer-Institut für Molekul... (Germany)
  • Universidad Industrial de Santan... (Colombia)
  • Universidad de Ciencias y Artes ... (Mexico)
  • Gyeongsang National University (Korea)
  • More...
  • Package
    Featured Products
    alpha-Amyrin

    Catalog No: CFN92377
    CAS No: 638-95-9
    Price: $318/5mg
    Arteannuin B

    Catalog No: CFN98807
    CAS No: 50906-56-4
    Price: $228/20mg
    Sibiricaxanthone B

    Catalog No: CFN90644
    CAS No: 241125-81-5
    Price: $288/20mg
    13-Hydroxylupanine

    Catalog No: CFN92232
    CAS No: 15358-48-2
    Price: $513/5mg
    Sophoraflavanone G

    Catalog No: CFN92005
    CAS No: 97938-30-2
    Price: $138/20mg
    Syringaresinol Description
    Source: The branch of Liriodendron chinensis
    Biological Activity or Inhibitors: 1. (-)-Syringaresinol may be a potential chemotherapeutic agent for the treatment of cancer.
    2. Syringaresinol against H/R-induced cardiomyocyte injury and death, the degradation of HIF-1α through activation of FOXO3 is a potential therapeutic strategy for ischemia-related diseases.
    3. Syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca(2+)/CaMKKβ-dependent eNOS phosphorylation and Ca(2+)-dependent eNOS dimerization.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Isonemerosin

    Catalog No: CFN95008
    CAS No: 181524-79-8
    Price: $268/20mg
    Isoliquiritin apioside

    Catalog No: CFN90800
    CAS No: 120926-46-7
    Price: $288/10mg
    (E)-Aldosecologanin

    Catalog No: CFN97737
    CAS No: 471271-55-3
    Price: $333/5mg
    Kakkalide

    Catalog No: CFN95052
    CAS No: 58274-56-9
    Price: $260/10mg
    Tubuloside A

    Catalog No: CFN90669
    CAS No: 112516-05-9
    Price: $268/20mg
    (R)-Reticuline

    Catalog No: CFN95013
    CAS No: 3968-19-2
    Price: $318/10mg
    Ganoderenic acid D

    Catalog No: CFN90300
    CAS No: 100665-43-8
    Price: $476/10mg
    7-Hydroxyaristolochic acid A

    Catalog No: CFN90517
    CAS No: 79185-75-4
    Price: $220/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi:10.1016/j.phymed.2017.12.030

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.3901 mL 11.9503 mL 23.9006 mL 47.8011 mL 59.7514 mL
    5 mM 0.478 mL 2.3901 mL 4.7801 mL 9.5602 mL 11.9503 mL
    10 mM 0.239 mL 1.195 mL 2.3901 mL 4.7801 mL 5.9751 mL
    50 mM 0.0478 mL 0.239 mL 0.478 mL 0.956 mL 1.195 mL
    100 mM 0.0239 mL 0.1195 mL 0.239 mL 0.478 mL 0.5975 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Syringaresinol References Information
    Citation [1]

    Bioorg Med Chem Lett. 2015 Jan 15;25(2):307-9.

    Enantioselective induction of SIRT1 gene by syringaresinol from Panax ginseng berry and Acanthopanax senticosus Harms stem.[Pubmed: 25479772]
    Syringaresinol exists either exclusively as one enantiomer or enantiomeric mixtures in plant foods. We found that (+)-Syringaresinol, but not (-)-Syringaresinol, upregulates silent information regulator two ortholog 1 (SIRT1) gene expression, and thus, Panax ginseng berry with predominantly high contents of (+)-Syringaresinol exhibits higher activity in inducing SIRT1 gene expression than Acanthopanax senticosus Harms stem with almost equal proportion of the two enantiomers. These findings highlight the importance of the absolute configuration of Syringaresinol for the biological activity.
    Citation [2]

    Oncotarget. 2015 Jan 1;6(1):43-55.

    Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism.[Pubmed: 25415049]
    Hypoxia-inducible factor 1 (HIF-1) is a master regulator of hypoxic response and has been a prime therapeutic target for ischemia/reperfusion (I/R)-derived myocardial dysfunction and tissue damage. There is also increasing evidence that HIF-1 plays a central role in regulating aging, both through interactions with key longevity factors including Sirtuins and mTOR, as well as by directly promoting longevity in Caenorhabditis elegans.We investigated a novel function and the underlying mechanism of Syringaresinol, a lignan compound, in modulation of HIF-1 and protection against cellular damage and death in a cardiomyocyte model of I/R injury. Syringaresinol caused destabilization of HIF-1α following H/R and then protected against hypoxia/reoxygenation (H/R)-induced cellular damage, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Knock-down of FOXO3 by specific siRNAs completely abolished the ability of Syringaresinol to inhibit HIF-1 stabilization and apoptosis caused by H/R. Syringaresinol stimulated the nuclear localization and activity of FOXO3 leading to increased expression of antioxidant genes and decreased levels of reactive oxygen species (ROS) following H/R. Our results provide a new mechanistic insight into a functional role of Syringaresinol against H/R-induced cardiomyocyte injury and death. The degradation of HIF-1α through activation of FOXO3 is a potential therapeutic strategy for ischemia-related diseases.
    Citation [3]

    Exp Mol Med. 2012 Mar 31;44(3):191-201.

    Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase.[Pubmed: 22170035]
    Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product Syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS(-/-) mice, with Syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor N(G)-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with Syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca(2+) levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca(2+) levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in Syringaresinol- treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca(2+) chelator, calmodulin antagonist, and CaMKKβ siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca(2+)-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that Syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca(2+)/CaMKKβ-dependent eNOS phosphorylation and Ca(2+)-dependent eNOS dimerization.
    Citation [4]

    Int Immunopharmacol. 2008 Jul;8(7):967-73.

    (-)-Syringaresinol inhibits proliferation of human promyelocytic HL-60 leukemia cells via G1 arrest and apoptosis.[Pubmed: 18486907]
    We examined the effect of (-)-Syringaresinol, a furofuran-type lignan isolated from Daphne genkwa, on cell cycle regulation in HL-60 human promyelocytic leukemia cells in vitro. (-)-Syringaresinol decreased the viability of HL-60 cells by inducing G(1) arrest followed by apoptosis in a dose- and time-dependent manner. The G(0)/G(1) phase of the cell cycle is regulated by cyclin-dependent kinases (Cdk), cyclins and cyclin-dependent kinase inhibitors (Cdki). We show by western blot analysis, that the (-)-Syringaresinol-induced G(1) arrest was mediated through the increased expression of Cdki proteins (p21(cip1/waf1) and p27(kip1)) with a simultaneous decrease in cdk2, cdk4, cdk6, cyclin D(1), cyclin D(2), and cyclin E expression. The induction of apoptosis after treatment with (-)-Syringaresinol for 24 h was demonstrated by morphological changes, DNA fragmentation, altered ratio of Bax/Bcl-2, cleavage of poly(ADP-ribose) polymerase and flow cytometry analysis. (-)-Syringaresinol also induced cytochrome c release and activation of caspase-3 and caspase-9. To our knowledge, this is the first time that (-)-Syringaresinol has been reported to potently inhibit the proliferation of human promyelocytic HL-60 cells through G(1) arrest and induction of apoptosis. These findings suggest that (-)-Syringaresinol may be a potential chemotherapeutic agent for the treatment of cancer.