• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Fraxin
    Information
    CAS No. 524-30-1 Price $100 / 20mg
    Catalog No.CFN99747Purity>=98%
    Molecular Weight370.32Type of CompoundCoumarins
    FormulaC16H18O10Physical DescriptionWhite powder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Medical University of Gdansk (Poland)
  • Aarhus University (Denmark)
  • Worcester Polytechnic Institute (USA)
  • Universidade do Porto (Portugal)
  • University of Oslo (Norway)
  • Calcutta University (India)
  • Technical University of Denmark (Denmark)
  • Universidade Federal de Goias (U... (Brazil)
  • Universidade Federal de Santa Ca... (Brazil)
  • Institute of Pathophysiology Med... (Austria)
  • Florida International University (USA)
  • More...
  • Package
    Featured Products
    Ginsenoside Rk2

    Catalog No: CFN92818
    CAS No: 364779-14-6
    Price: $498/10mg
    Chrysin 6-C-arabinoside 8-C-glucos...

    Catalog No: CFN92284
    CAS No: 185145-33-9
    Price: $368/5mg
    Astragalin

    Catalog No: CFN98733
    CAS No: 480-10-4
    Price: $138/20mg
    Tanshindiol C

    Catalog No: CFN92147
    CAS No: 97465-71-9
    Price: $418/5mg
    Isoacteoside

    Catalog No: CFN97049
    CAS No: 61303-13-7
    Price: $178/20mg
    Biological Activity
    Description: 1. Fraxin shows free radical scavenging effect at high concentration (0.5 mM) and cell protective effect against H2O2-mediated oxidative stress; it can recovere viability of human umbilical vein endothelial cells (HUVECs) damaged by H2O2-treatment and can reduce the lipid peroxidation and the internal reactive oxygen species level elevated by H2O2 treatment.
    2. Fraxin enhances urate excretion partly by inhibiting mURAT1 or mGLUT9 in kidney of hyperuricemic mice.
    Targets: GLUT
    Fraxin Description
    Source: The bark of Fraxinus brngeana DC.
    Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Atractylenolide III acetate

    Catalog No: CFN95078
    CAS No: N/A
    Price: $413/5mg
    Decuroside I

    Catalog No: CFN95004
    CAS No: 96638-79-8
    Price: $318/5mg
    Epimedin B1

    Catalog No: CFN95017
    CAS No: 133137-58-3
    Price: $268/5mg
    Calycosin-7-O-beta-D-glucoside

    Catalog No: CFN99141
    CAS No: 20633-67-4
    Price: $128/20mg
    Poricoic acid B

    Catalog No: CFN95050
    CAS No: 137551-39-4
    Price: $368/10mg
    Iristectorin A

    Catalog No: CFN95037
    CAS No: 37744-61-9
    Price: $333/5mg
    3,4-O-dimethylcedrusin

    Catalog No: CFN95026
    CAS No: 166021-14-3
    Price: $388/10mg
    Juglanin

    Catalog No: CFN96238
    CAS No: 5041-67-8
    Price: $368/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.7004 mL 13.5018 mL 27.0037 mL 54.0073 mL 67.5092 mL
    5 mM 0.5401 mL 2.7004 mL 5.4007 mL 10.8015 mL 13.5018 mL
    10 mM 0.27 mL 1.3502 mL 2.7004 mL 5.4007 mL 6.7509 mL
    50 mM 0.054 mL 0.27 mL 0.5401 mL 1.0801 mL 1.3502 mL
    100 mM 0.027 mL 0.135 mL 0.27 mL 0.5401 mL 0.6751 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Fraxin References Information
    Citation [1]

    Exp Mol Med. 2005 Oct 31;37(5):436-46.

    Natural compounds,fraxin and chemicals structurally related to fraxin protect cells from oxidative stress.[Pubmed: 16264268]
    Coumarins comprise a group of natural phenolic compounds found in a variety of plant sources. In view of the established low toxicity, relative cheapness, presence in the diet and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further. The purpose of this study is to investigate cellular protective activity of coumarin compound, Fraxin extracted from Weigela florida var. glabbra, under oxidative stress, to identify genes expressed differentially by Fraxin and to compare antioxidative effect of Fraxin with its structurally related chemicals. Of the coumarins, protective effects of Fraxin against cytotoxicity induced by H2O2 were examined in human umbilical vein endothelial cells (HUVECs). Fraxin showed free radical scavenging effect at high concentration (0.5 mM) and cell protective effect against H2O2-mediated oxidative stress. Fraxin recovered viability of HUVECs damaged by H2O2-treatment and reduced the lipid peroxidation and the internal reactive oxygen species level elevated by H2O2 treatment. Differential display reverse transcription-PCR revealed that Fraxin upregulated antiapoptotic genes (clusterin and apoptosis inhibitor 5) and tumor suppressor gene (ST13). Based on structural similarity comparing with Fraxin, seven chemicals, fraxidin methyl ether (29.4% enhancement of viability), prenyletin (26.4%), methoxsalen (20.8%), diffratic acid (19.9%), rutoside (19.1%), xanthyletin (18.4%), and kuhlmannin (18.2%), enhanced more potent cell viability in the order in comparison with Fraxin, which showed only 9.3% enhancement of cell viability. These results suggest that Fraxin and Fraxin-related chemicals protect HUVECs from oxidative stress.
    Citation [2]

    Biomed Chromatogr. 2005 Nov;19(9):696-702.

    Non-aqueous capillary electrophoresis for separation and simultaneous determination of fraxin, esculin and esculetin in Cortex fraxini and its medicinal preparations.[Pubmed: 15828063]
    A non-aqueous capillary electrophoresis method has been developed for the separation and simultaneous determination of Fraxin, esculin and esculetin in Cortex Fraxini and its preparation for the first time. Optimum separation of the analytes was obtained on a 47 cm x 75 microm i.d. fused-silica capillary using a non-aqueous buffer system of 60 mM sodium cholate, 20 mM ammonium acetate, 20% acetonitrile and 3% acetic acid at 20 kV and 292 K, respectively. The relative standard deviations (RSDs) of the migration times and the peak heights of the three analytes were in the range of 0.23-0.28 and 2.12-2.60%, respectively. Detection limits of Fraxin, esculin and esculetin were 0.1557, 0.4073 and 0.5382 microg/mL, respectively. In the tested concentration range, good linear relationships (correlation coefficients 0.9995 for Fraxin, 0.9999 for esculin and 0.9992 for esculetin) between peak heights and concentrations of the analytes were observed. This method has been successfully applied to simultaneous determination of the three bioactive components with the recoveries from 90.2 to 109.2% in the five samples.
    Citation [3]

    J Nat Prod. 2006 May;69(5):755-7.

    Metabolic fate of fraxin administered orally to rats.[Pubmed: 16724835]
    Naturally occurring Fraxin (1) was administered orally to rats to investigate its metabolism. Urinary metabolites were analyzed by three-dimensional HPLC, and fraxetin-7-O-sulfate (2), fraxetin-7-O-beta-glucuronide (3), fraxetin (4), 6,7,8-trihydroxycoumarin (5), and fraxidin (6) were isolated. Fraxin (1) was extensively metabolized to 4, which was partly metabolized to 5 in a rat fecal suspension after incubation for 24 h. Urinary excretion of 4 and 5 in rats administered orally with 1 was substantially reduced when the rats were treated with antibiotics to suppress their intestinal flora. Incubation of 1 with a rat liver S-9 mixture yielded 6. These results suggest that hydrolysis and demethylation of 1 are performed by intestinal microflora, while methylation occurs in the liver.
    Citation [4]

    Eur J Pharmacol. 2011 Sep;666(1-3):196-204.

    Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice.[Pubmed: 21620826]
    The aim of the present study was to investigate the effects of cortex Fraxini coumarines esculetin, esculin, fraxetin and Fraxin on renal dysfunction and expression abnormality of renal organic ion transporters in hyperuricemic animals. Mice were orally given 250 mg/kg oxonate for seven consecutive days to induce hyperuricemia and renal dysfunction. After 1h of oxonate induction daily, animals were orally treated with esculetin, esculin, fraxetin and Fraxin at 20 and 40 mg/kg, respectively. Esculetin, esculin, fraxetin and Fraxin significantly decreased serum urate, creatinine and blood urea nitrogen levels and increased urine urate and creatinine excretion in hyperuricemic mice. Esculetin and esculin up-regulated expressions of renal organic anion transporter 1 (mOAT1), organic cation and carnitine transporters (mOCT1-2 and mOCTN1-2), but failed to affect renal glucose transporter 9 (mGLUT9) and urate transporter 1 (mURAT1) in this model. Fraxetin specifically inhibited renal mURAT1, while Fraxin extensively interacted with renal mGLUT9, mURAT1, mOAT1 and mOCT1 in hyperuricemic mice. Furthermore, esculetin, fraxetin and Fraxin increased mABCG2 mRNA expression and decreased its protein levels in renal apical membrane in hyperuricemic mice. These results indicate that esculetin and esculin have beneficial effects on hyperuricemia and renal dysfunction, resulting in restoration of mOAT1, mOCT1-2 and mOCTN1-2, and fraxetin and Fraxin enhance urate excretion partly by inhibiting mURAT1 or mGLUT9 in kidney of hyperuricemic mice. Regulation of mABCG2 by cortex Fraxini coumarines may be partly contributed to their beneficial actions. This study provides an evidence to support clinical therapeutic effects of cortex Fraxini coumarines on hyperuricemia with renal dysfunction.