• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    CAS No. 52438-12-7 Price $348 / 10mg
    Catalog No.CFN92023Purity>=98%
    Molecular Weight358.4Type of CompoundQuinones
    FormulaC20H22O6Physical DescriptionPowder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Uniwersytet Gdański (Poland)
  • Guangzhou Institutes of Biomedic... (China)
  • Tokyo Woman's Christian University (Japan)
  • Biotech R&D Institute (USA)
  • University of Wuerzburg (Germany)
  • Florida International University (USA)
  • University of Fribourg (Switzerland)
  • University of Otago (New Zealand)
  • Massachusetts General Hospital (USA)
  • University of Mysore (India)
  • Research Unit Molecular Epigenet... (Germany)
  • More...
  • Package
    Featured Products

    Catalog No: CFN92368
    CAS No: 79-63-0
    Price: $388/5mg

    Catalog No: CFN97160
    CAS No: 6807-83-6
    Price: $128/20mg

    Catalog No: CFN98565
    CAS No: 5373-11-5
    Price: $60/20mg
    Chrysin 6-C-glucoside 8-C-arabinos...

    Catalog No: CFN92285
    CAS No: 185145-34-0
    Price: $368/5mg

    Catalog No: CFN99710
    CAS No: 51059-44-0
    Price: $100/20mg
    Biological Activity
    Description: Isobutylshikonin exhibits obvious antioxidant activities , it exerts very good radical scavenging activities toward ABTS+ but shows moderate inhibition of DPPH·.
    In vitro:
    J Agric Food Chem. 1999 Oct;47(10):4117-20.
    Physical stability of shikonin derivatives from the roots of Lithospermum erythrorhizon cultivated in Korea.[Pubmed: 10552776]

    Five red shikonin pigments, deoxyshikonin, shikonin, acetylshikonin, Isobutylshikonin, and beta-hydroxyisovalerylshikonin, were isolated from the roots of Lithospermum erythrorhizon cultivated in Korea. The purified pigments were red, purple, and blue at acidic, neutral, and alkaline pH values, respectively. Physical stability of the purified pigments against heat and light in an aqueous solution was examined for possible value-added food colorants. The thermal degradation reactions were carried out at pH 3.0 (50 mM glycine buffer) in 50% EtOH/H(2)O. Deoxyshikonin (t(1/2) = 14.6 h, 60 degrees C) and isobutylshikinin (t(1/2) = 19.3 h, 60 degrees C) are relatively less stable than other shikonin derivatives (t(1/2) = 40-50 h, 60 degrees C). Activation energies of thermal degradation of the isolated pigments were calculated. The activation energy of deoxyshikonin was the highest (12.5 kcal mol(-)(1)) and that of beta-hydroxyisovalerylshikonin was the lowest (1.71 kcal mol(-)(1)) value.
    Light stabilities of the pigments were similar to each other in that the half-life values of photodegradation for 20000 lx light intensity were 4.2-5.1 h.
    Food Chemistry, 2008, 106(1):2-10.
    Antioxidants from a Chinese medicinal herb – Lithospermum erythrorhizon[Reference: WebLink]
    Seven compounds, deoxyshikonin (1), β,β-dimethylacrylshikonin (2), Isobutylshikonin (3), shikonin (4), 5,8-dihydroxy-2-(1-methoxy-4-methyl-3-pentenyl)-1,4-naphthalenedione (5), β-sitosterol (6) and a mixture of two caffeic acid esters [7 (7a,7b)] were isolated from Lithospermum erythrorhizon Sieb et. Zucc. and identified by spectroscopic methods. Among them, compound 5 was isolated from this plant species for the first time.
    The antioxidant activities of the seven compounds were compared and evaluated through Rancimat method, reducing power and radical scavenging activity. Results showed that, except compound 6, another 6 compounds all exhibited obvious antioxidant activities against four different methods. Compounds 4 and 7 exerted much more potent antioxidant effects on retarding the lard oxidation than that of BHT and both were found to exhibit strong reducing power. Their antioxidant activities, assessed by Rancimat method and reducing power, decreased in the following order, respectively: compound 7 > 4 > BHT > 2 > 3 > 5 > 1 > 6 and compound 7 > BHT > 4 > 2 approximately 3 approximately 5 > 1> 6. In addition, compounds 1-5 all exerted very good radical scavenging activities toward ABTS+ but showed moderate inhibition of DPPH·, while compound 7 presented as a powerful radical scavenger against both ABTS·+ and DPPH·.
    Thus, our results suggested that L. erythrorhizon could be a promising rich source of natural antioxidants.
    Isobutylshikonin Description
    Source: The roots of Lithosperraum erythrorhizon Sieb. et Zucc.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds

    Catalog No: CFN98456
    CAS No: 3464-66-2
    Price: $288/5mg
    (-)-Lyoniresinol 9'-O-glucoside

    Catalog No: CFN96732
    CAS No: 143236-02-6
    Price: $513/5mg

    Catalog No: CFN99137
    CAS No: 3371-27-5
    Price: $178/20mg
    Aristolochic acid D

    Catalog No: CFN90783
    CAS No: 17413-38-6
    Price: $448/10mg

    Catalog No: CFN92855
    CAS No: 2196-14-7
    Price: $100/5mg
    Arjunglucoside I

    Catalog No: CFN95049
    CAS No: 62319-70-4
    Price: $268/10mg

    Catalog No: CFN95039
    CAS No: 58880-25-4
    Price: $318/10mg

    Catalog No: CFN96389
    CAS No: 30508-27-1
    Price: $388/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.7902 mL 13.9509 mL 27.9018 mL 55.8036 mL 69.7545 mL
    5 mM 0.558 mL 2.7902 mL 5.5804 mL 11.1607 mL 13.9509 mL
    10 mM 0.279 mL 1.3951 mL 2.7902 mL 5.5804 mL 6.9754 mL
    50 mM 0.0558 mL 0.279 mL 0.558 mL 1.1161 mL 1.3951 mL
    100 mM 0.0279 mL 0.1395 mL 0.279 mL 0.558 mL 0.6975 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Structure Identification:
    Anal Chim Acta. 2006 Sep 1;577(1):26-31.
    Simultaneous determination of naphthoquinone derivatives in Boraginaceous herbs by high-performance liquid chromatography.[Pubmed: 17723649]

    A high-performance liquid chromatographic method using diode-array detection (HPLC-DAD) has been developed for the simultaneous quantification of eight naphthoquinone derivatives namely shikonin, acetylshikonin, deoxyshikonin, beta-acetoxyisovalerylshikonin, Isobutylshikonin, beta,beta-dimethylacrylshikonin, 2-methyl-n-butyrylshikonin and isovalerylshikonin in nine species of the Boraginaceae family. These species, coming from different areas of China, are all used as interchangeable sourcing plants for the Chinese Materia Medica known as "Zicao", and are Arnebia euchroma (Royle) Johnston., A. guttata Bunge, Lithospermum erythrorhizon Sieb. et Zucc., Onosma paniculatum Bur. et Franch., O. exsertum Hemsl., O. confertum W.W. Smith, O. hookerii Clarke var. longiflorum Duthie, O. hookerii Clarke and O. waltonii Duthic. Quantification of the eight naphthoquinones in all the Zicao samples are reported and compared with each other. Furthermore, two positional isomers, 2-methyl-n-butyrylshikonin and isovalerylshikonin, were successfully separated and quantified for the first time in the present study. The results showed that, besides the three officially used species (namely, A. euchroma, A. guttata and L. erythrorhizon) that were listed in Chinese pharmacopoeia as interchangeable sourcing plants for Zicao, other six species of Onosma used by native peoples in Tibet and Yunnan Province also contain various types and considerable amounts of naphthoquinones and that O. waltonii contains the most.
    Therefore, these species of Onosma could be developed as new sources of naphthoquinones. The entire analytical procedure is reproducible and suitable for the quantification of naphthoquinones in all related Boraginaceous plants for quality assessment purposes.