• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    CAS No. 139-85-5 Price $30 / 20mg
    Catalog No.CFN99450Purity>=98%
    Molecular Weight138.1 Type of CompoundPhenols
    FormulaC7H6O3Physical DescriptionPowder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Donald Danforth Plant Science Ce... (USA)
  • University of Bordeaux (France)
  • University of Wollongong (Australia)
  • Lund University (Sweden)
  • University of Vigo (Spain)
  • Institute of Chinese Materia Med... (China)
  • Centralised Purchases Unit (CPU)... (India)
  • Shanghai University of TCM (China)
  • Michigan State University (USA)
  • Calcutta University (India)
  • Research Unit Molecular Epigenet... (Germany)
  • More...
  • Package
    Featured Products
    Tubuloside A

    Catalog No: CFN90669
    CAS No: 112516-05-9
    Price: $268/20mg
    Oroxylin A 7-O-beta-D-glucuronide

    Catalog No: CFN90191
    CAS No: 36948-76-2
    Price: $318/20mg

    Catalog No: CFN92616
    CAS No: 7727-79-9
    Price: $278/20mg

    Catalog No: CFN97083
    CAS No: 62596-29-6
    Price: $128/20mg

    Catalog No: CFN92016
    CAS No: 53846-50-7
    Price: $298/10mg
    Biological Activity
    Description: 3,4-Dihydroxybenzaldehyde, a potent tyrosinase inhibitor, has antifungal activity, it can inhibit oxidative DNA damage and apoptosis via its antioxidant activity. It inhibits the phosphotransferase activity of CKII with IC(50) of about 783 microM, it may function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity. It inhibits the H2O2-induced apoptosis of granulosa cells, promotes estradiol secretion in granulosa cells and enhanced the mRNA expression levels of steroidogenic factor 1, a promoter of key steroidogenic enzymes.
    Targets: ROS | PARP | Antifection | Tyronase | CKII
    In vitro:
    Acta Histochem Cytochem. 2014 Jun 28;47(3):103-12.
    3,4-Dihydroxybenzaldehyde Derived from Prunus mume Seed Inhibits Oxidative Stress and Enhances Estradiol Secretion in Human Ovarian Granulosa Tumor Cells.[Pubmed: 25320407]
    Granulosa cells form ovarian follicles and play important roles in the growth and maturation of oocytes. The protection of granulosa cells from cellular injury caused by oxidative stress is an effective therapy for female infertility.
    We here investigated an effective bioactive compound derived from Prunus mume seed extract that protects granulosa cells from hydrogen peroxide (H2O2)-induced apoptosis. We detected the bioactive compound, 3,4-Dihydroxybenzaldehyde (3,4-DHBA), via bioactivity-guided isolation and found that it inhibited the H2O2-induced apoptosis of granulosa cells. We also showed that 3,4-DHBA promoted estradiol secretion in granulosa cells and enhanced the mRNA expression levels of steroidogenic factor 1, a promoter of key steroidogenic enzymes.
    These results suggest that P. mume seed extract may have clinical potential for the prevention and treatment of female infertility.
    Phytochemistry, 1969, 8(2):393-5.
    3,4-dihydroxybenzaldehyde, a fungistatic substance from green Cavendish bananas.[Reference: WebLink]
    A fungistatic substance has been isolated from the outer skin of green Cavendish bananas and identified as 3,4-Dihydroxybenzaldehyde. The compound has been shown to inhibit the growth of Gloeosporium musarum, a fungus which causes ripe fruit rot in the banana.
    3,4-Dihydroxybenzaldehyde Description
    Source: The heartwoods of Cassia garrettiana.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds

    Catalog No: CFN92363
    CAS No: 14259-47-3
    Price: $128/20mg

    Catalog No: CFN99025
    CAS No: 101140-06-1
    Price: $418/5mg

    Catalog No: CFN93257
    CAS No: 2608-21-1
    Price: $368/5mg
    Aristolochic acid D

    Catalog No: CFN90783
    CAS No: 17413-38-6
    Price: $448/10mg
    Bruceoside A

    Catalog No: CFN95080
    CAS No: 63306-30-9
    Price: $318/5mg
    Ebracteolata cpd B

    Catalog No: CFN92882
    CAS No: 83459-37-4
    Price: $268/10mg
    Isomucronulatol 7-O-glucoside

    Catalog No: CFN93256
    CAS No: 94367-43-8
    Price: $338/10mg
    Glyasperin C

    Catalog No: CFN95065
    CAS No: 142474-53-1
    Price: $333/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 7.2411 mL 36.2056 mL 72.4113 mL 144.8226 mL 181.0282 mL
    5 mM 1.4482 mL 7.2411 mL 14.4823 mL 28.9645 mL 36.2056 mL
    10 mM 0.7241 mL 3.6206 mL 7.2411 mL 14.4823 mL 18.1028 mL
    50 mM 0.1448 mL 0.7241 mL 1.4482 mL 2.8965 mL 3.6206 mL
    100 mM 0.0724 mL 0.3621 mL 0.7241 mL 1.4482 mL 1.8103 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Kinase Assay:
    Nat Prod Res. 2008;22(16):1441-50.
    Apoptotic cell death through inhibition of protein kinase CKII activity by 3,4-dihydroxybenzaldehyde purified from Xanthium strumarium.[Pubmed: 19023807]

    The CKII inhibitory compound was purified from the fruit of Xanthium strumarium by organic solvent extraction and silica gel chromatography. The inhibitory compound was identified as 3,4-Dihydroxybenzaldehyde by analysis with FT-IR, FAB-Mass, EI-Mass, (1)H-NMR and (13)C-NMR. 3,4-Dihydroxybenzaldehyde inhibited the phosphotransferase activity of CKII with IC(50) of about 783 microM. Steady-state studies revealed that the inhibitor acts as a competitive inhibitor with respect to the substrate ATP. A value of 138.6 microM was obtained for the apparent K(i). Concentration of 300 microM 3,4-Dihydroxybenzaldehyde caused 50% growth inhibition of human cancer cell U937. 3,4-Dihydroxybenzaldehyde-induced cell death was characterised with the cleavage of poly(ADP-ribose) polymerase and procaspase-3. Furthermore, the inhibitor induced the fragmentation of DNA into multiples of 180 bp, indicating that it triggered apoptosis. This induction of apoptosis by 3,4-Dihydroxybenzaldehyde was also confirmed by using flow cytometry analysis.
    Since CKII is involved in cell proliferation and oncogenesis, these results suggest that 3,4-Dihydroxybenzaldehyde may function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity.
    Cell Research:
    Phytomedicine. 2009 Jan;16(1):85-94.
    3,4-dihydroxybenzaldehyde purified from the barley seeds (Hordeum vulgare) inhibits oxidative DNA damage and apoptosis via its antioxidant activity.[Pubmed: 19022639]
    Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS.
    In this study, we purified 3,4-Dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-Dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H(2)O(2), the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe(2+) chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-Dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe(2+). In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-Dihydroxybenzaldehyde attenuated H(2)O(2)-induced cell death and apoptosis.
    These results suggest that the barley may exert the inhibitory effect on H(2)O(2)-induced tumor development by blocking H(2)O(2)-induced oxidative DNA damage, cell death and apoptosis.
    Structure Identification:
    The Korea Jounnal of Herbology, 2006, 21(2):1-7.
    Tyronase Inhibitory Effect of 3,4-Dihydroxybenzaldehyde Isolated from Pinellia ternata.[Reference: WebLink]
    The purpose of this study is to isolate tyrosinase inhibitory material from Pinellia ternata and characterize its own structure and activity.
    Pinellia ternata (600g) was extracted with 95% methanol (1L) at for 4 days, with shaking at 250rpm. The extract was further solvent-fractionated with n-hexane, chloroform, ethylacetate and water. The active fraction was subjected to JAI recycling prep-HPLC JAIGEL GS-320 column. The structure was identified for the active peak with NMR and GC. Results : Tyrosinase was potently inhibited by 95% methanol extracts from Pinellia ternata. The IC(50) value of the extracts was estimated to be 0.05mg/ml. The extracts was divided into four solvent-fractions, and the most potent tyrosinase inhibition was found in ethylacetate layer. IC(50) value of ethylacetate fraction was 0.001mg/ml. This fraction was further purified with JAI Recycling Preparative HPLC (Model: LC 9104). The isolated compound showing inhibitory activity was characterized on its chemical structure by NMR and the compound was identified as 3,4-Dihydroxybenzaldehyde. IC(50) was found to be 7.74 which is much lower than that of kojic acid .
    The data suggest that 3,4-Dihydroxybenzaldehyde isolated and identified from Pinellia ternata is very strong inhibitor to melanin biosynthesis.