• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Kobusin
    Kobusin
    Information
    CAS No. 36150-23-9 Price $368 / 10mg
    Catalog No.CFN89280Purity>=98%
    Molecular Weight370.40Type of CompoundLignans
    FormulaC21H22O6Physical DescriptionPowder
    Download     COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Mahidol University (Thailand)
  • Yale University (USA)
  • Srinakharinwirot University (Thailand)
  • Nanjing University of Chinese Me... (China)
  • Agricultural Research Organizati... (Israel)
  • Seoul National University of Sci... (Korea)
  • Hamdard University (India)
  • University of Lodz (Poland)
  • Istanbul University (Turkey)
  • University of Brasilia (Brazil)
  • Institute of Tropical Disease Un... (Indonesia)
  • More...
  • Package
    Featured Products
    Echinacoside

    Catalog No: CFN98105
    CAS No: 82854-37-3
    Price: $60/20mg
    Kaempferol 3-O-(6''-galloyl)-beta-...

    Catalog No: CFN92383
    CAS No: 56317-05-6
    Price: $533/5mg
    Tanshindiol C

    Catalog No: CFN92147
    CAS No: 97465-71-9
    Price: $418/5mg
    Mulberroside F

    Catalog No: CFN90794
    CAS No: 193483-95-3
    Price: $398/10mg
    Butyrospermol

    Catalog No: CFN92376
    CAS No: 472-28-6
    Price: $388/5mg
    Biological Activity
    Description: 1. Kobusin exhibits cytotoxic effect against B16-F10 melanoma cells. 2. Kobusin can mildly reduce gastrointestinal motility in mice, it activates CFTR and CaCCgie chloride channel activities in mouse colonic epithelia and shows inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells.
    3. Kobusin shows mild antiplasmodial activities.
    4. Kobusin has anti-inflammatoryactivity, it may be beneficial for the treatment of neuro-inflammatory diseases through the inhibition of iNOS expression and peroxynitrite scavenging potential.
    5. Kobusin is a Calmodulin inhibitor, it can inhibit the activation of the calmodulin-dependent enzyme cAMP phosphodiesterase.
    Targets: NF-kB | NO | NOS | cAMP
    Kobusin Description
    Source: The barks of Zanthoxylum rhetsa.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Physalin G

    Catalog No: CFN95104
    CAS No: 76045-38-0
    Price: $388/5mg
    Corylifol A

    Catalog No: CFN92226
    CAS No: 775351-88-7
    Price: $318/20mg
    Deacetyl ganoderic acid F

    Catalog No: CFN90746
    CAS No: 100665-44-9
    Price: $388/5mg
    Alloisoimperatorin

    Catalog No: CFN95012
    CAS No: 35214-83-6
    Price: $338/5mg
    4-O-Feruloylquinic acid

    Catalog No: CFN92392
    CAS No: 2613-86-7
    Price: $448/5mg
    Cordifolioside A

    Catalog No: CFN95040
    CAS No: 155179-20-7
    Price: $368/10mg
    2'-Rhamnoechinacoside

    Catalog No: CFN95035
    CAS No: 1422390-59-7
    Price: $368/10mg
    Isochlorogenic acid C

    Catalog No: CFN99120
    CAS No: 32451-88-0
    Price: $138/20mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.6998 mL 13.4989 mL 26.9978 mL 53.9957 mL 67.4946 mL
    5 mM 0.54 mL 2.6998 mL 5.3996 mL 10.7991 mL 13.4989 mL
    10 mM 0.27 mL 1.3499 mL 2.6998 mL 5.3996 mL 6.7495 mL
    50 mM 0.054 mL 0.27 mL 0.54 mL 1.0799 mL 1.3499 mL
    100 mM 0.027 mL 0.135 mL 0.27 mL 0.54 mL 0.6749 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Kobusin References Information
    Citation [1]

    Molecules. 2016 May 24;21(6).

    Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.[Pubmed: 27231889 ]
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and Kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and Kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
    Citation [2]

    Front Plant Sci. 2015 Nov 25;6:1041.

    Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin.[Pubmed: 26635857 ]
    Plant lignans are diphenolic compounds widely present in vegetables, fruits, and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, Kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs). The compounds activated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of Kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells) were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds activated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 100 μM for Kobusin and 200 μM for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function.
    Citation [3]

    J Ethnopharmacol. 2011 Nov 18;138(2):637-40.

    Furfuran lignans and a flavone from Artemisia gorgonum Webb and their in vitro activity against Plasmodium falciparum.[Pubmed: 21982788 ]
    The chemical composition of the aerial parts of the Cape Verdean endemic shrub Artemisia gorgonum Webb (Asteraceae) was careful investigated, which led to the isolation and identification of six known furfuran lignans: eudesmin (1), magnolin (2), epimagnolin A (3), aschantin (4), Kobusin (5), sesamin (6) and a flavone: artemetin (7). Compounds 1-7 were evaluated in vitro for their cytotoxicity in a screening panel consisting of various mammalian tumor cell lines, for their antimalarial activity against chloroquine-resistant Plasmodium falciparum (FcB1 strain) and for their cytotoxicity against murine normal cells (CFU-GM). While no promising cytotoxicity against human tumor cells were noticed, marginal potency and selectivity was found for compounds 1-5 against murine colon 38. Besides, compounds 2-7 showed mild antiplasmodial activities, 6 and 7 being the most active compounds (IC(50) 3.37 and 3.50 μg/ml respectively) without noticeable toxicity on mammalian normal cells. This is the first report of antiplasmodial activity for furfuran lignans and the first isolation of 1-7 from Artemisia gorgonum.
    Citation [4]

    Phytother Res. 2010 May;24(5):748-53.

    Suppression of inducible nitric oxide synthase expression by furfuran lignans from flower buds of Magnolia fargesii in BV-2 microglial cells.[Pubmed: 19943243]
    The structures of them were identified as Kobusin (1), aschantin (2) and fargesin (3) by the analyses of spectroscopic data. They inhibited the production of NO by activated microglia. Their IC(50) values were 21.8 +/- 3.7, 14.8 +/- 2.5 and 10.4 +/- 2.8 microg/mL, respectively. They suppressed LPS-induced NF-kappaB activation and the expression of iNOS protein and mRNA. Furthermore, they showed scavenging activity of neurotoxic peroxynitrite that can be produced by NO and superoxide anion. These results imply that lignans from Magnolia fargesii might be beneficial for the treatment of neuro-inflammatory diseases through the inhibition of iNOS expression and peroxynitrite scavenging potential.
    Citation [5]

    J Nat Prod. 2003 Feb;66(2):221-4.

    Calmodulin inhibitors from Leucophyllum ambiguum.[Pubmed: 12608853 ]
    Activity-directed fractionation of a CH(2)Cl(2)-MeOH (1:1) extract of Leucophyllum ambiguum led to the isolation of two new lignans designated with the trivial names of 2'-methoxyKobusin (1) and 2'-methoxy-4' '-hydroxydemethoxyKobusin (2). In addition, the known compounds Kobusin (3), 2',2' '-dimethoxysesamin (4), trans-cinnamic acid, apigenin, and apigetrin were obtained. The identification of the novel analogues 1 and 2 was accomplished by spectral methods. The structure of 1 was unequivocally confirmed by X-ray analysis. Compounds 1-4 interacted with bovine-brain calmodulin and inhibited the activation of the calmodulin-dependent enzyme cAMP phosphodiesterase.