• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Pinoresinol
    Information
    CAS No. 487-36-5 Price $268 / 20mg
    Catalog No.CFN98775Purity>=98%
    Molecular Weight358.4 Type of CompoundLignans
    FormulaC20H22O6Physical DescriptionPowder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • University of Queensland (Australia)
  • University of Vigo (Spain)
  • Sapienza University of Rome (Italy)
  • Universitas islam negeri Jakarta (Indonesia)
  • University of Padjajaran (Indonesia)
  • Instituto Politécnico de Bragan?a (Portugal)
  • Northeast Normal University Chan... (China)
  • University of Parma (Italy)
  • John Innes Centre (United Kingdom)
  • Deutsches Krebsforschungszentrum (Germany)
  • Kitasato University (Japan)
  • More...
  • Package
    Featured Products
    (-)-Pinoresinol

    Catalog No: CFN92287
    CAS No: 81446-29-9
    Price: $268/5mg
    Trifolirhizin

    Catalog No: CFN97160
    CAS No: 6807-83-6
    Price: $128/20mg
    Hesperetin

    Catalog No: CFN98842
    CAS No: 520-33-2
    Price: $40/20mg
    Neochlorogenic acid

    Catalog No: CFN97472
    CAS No: 906-33-2
    Price: $138/20mg
    Syringaresinol-di-O-glucoside

    Catalog No: CFN90458
    CAS No: 66791-77-3
    Price: $288/20mg
    Pinoresinol Description
    Source: The bark of Eucommia ulmoides Oliver
    Biological Activity or Inhibitors: 1. Pinoresinol may exert pharmacologically interesting effects via modulation of the insulin-like signalling pathway in C. elegans.
    2. Pinoresinol can protect pial microcirculation from I-reperfusion injury, to increase nitric oxide release and to reduce oxidative stress preserving pial blood flow distribution.
    3. Pinoresinol causes an upregulation of the CDK inhibitor p21(WAF1/Cip1) both at mRNA and protein levels, it may be a mechanism that Pinoresinol reduce proliferation and induce differentiation on HL60 cells.
    4. Pinoresinol exhibits the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism.
    5. Pinoresinol can ameliorate CCl4-induced acute liver injury, and this protection is likely due to anti-oxidative activity and down-regulation of inflammatory mediators through inhibition of NF-kappaB and activating protein 1 (AP-1).
    6. (+)-Pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Glyasperin C

    Catalog No: CFN95065
    CAS No: 142474-53-1
    Price: $333/5mg
    Neobavaisoflavone

    Catalog No: CFN92222
    CAS No: 41060-15-5
    Price: $128/20mg
    Ginsenoside Rg6

    Catalog No: CFN90565
    CAS No: 147419-93-0
    Price: $488/10mg
    Arjunic acid

    Catalog No: CFN98397
    CAS No: 31298-06-3
    Price: $413/5mg
    Brevilin A

    Catalog No: CFN99694
    CAS No: 16503-32-5
    Price: $338/10mg
    Poricoic acid A(F)

    Catalog No: CFN92838
    CAS No: 137551-38-3
    Price: $218/10mg
    Licoricone

    Catalog No: CFN96504
    CAS No: 51847-92-8
    Price: $333/5mg
    20-O-Glucoginsenoside Rf

    Catalog No: CFN95036
    CAS No: 68406-27-9
    Price: $368/10mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi:10.1016/j.phymed.2017.12.030

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.7902 mL 13.9509 mL 27.9018 mL 55.8036 mL 69.7545 mL
    5 mM 0.558 mL 2.7902 mL 5.5804 mL 11.1607 mL 13.9509 mL
    10 mM 0.279 mL 1.3951 mL 2.7902 mL 5.5804 mL 6.9754 mL
    50 mM 0.0558 mL 0.279 mL 0.558 mL 1.1161 mL 1.3951 mL
    100 mM 0.0279 mL 0.1395 mL 0.279 mL 0.558 mL 0.6975 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Pinoresinol References Information
    Citation [1]

    Phytother Res. 2015 Jun;29(6):894-901.

    The Lignan Pinoresinol Induces Nuclear Translocation of DAF-16 in Caenorhabditis elegans but has No Effect on Life Span.[Pubmed: 25826281]
    The lignan Pinoresinol is a constituent of flaxseed, sesame seeds and olive oil. Because of different molecular effects reported for this compound, e.g. antioxidative activity, Pinoresinol is suggested to cause positive effects on humans. Because experimental data are limited, we have analysed the effects of the lignan on the nematode Caenorhabditis elegans: in spite of a strong antioxidative capacity detected in an in vitro assay, no antioxidative effects were detectable in vivo. In analogy to this result, no modulation of the sensitivity against thermal stress was detectable. However, incubation with Pinoresinol caused an enhanced nuclear accumulation of the transcription factor DAF-16 (insulin/IGF-like signalling pathway). Using a strain with an enhanced oxidative stress level (mev-1 mutant), we clearly see an increase in stress resistance caused by this lignan, but no change in reactive oxygen species. Furthermore, we investigated the effects of Pinoresinol on the life span of the nematode, but no modulation was found, neither in wild-type nor in mev-1 mutant nematodes. These results suggest that Pinoresinol may exert pharmacologically interesting effects via modulation of the insulin-like signalling pathway in C. elegans as well as in other species like mammals due to the evolutionary conservation of this signalling pathway.
    Citation [2]

    Microcirculation. 2015 Jan;22(1):79-90.

    Effects of oleuropein and pinoresinol on microvascular damage induced by hypoperfusion and reperfusion in rat pial circulation.[Pubmed: 25243351]
    Pretreatment with oleuropein or Pinoresinol, a higher dose before BCCAO determined dilation in all arteriolar orders RE. Microvascular leakage was reduced as well as leukocyte adhesion and ROS formation, while capillary perfusion was protected. Inhibition of endothelium nitric oxide synthase prior to oleuropein or Pinoresinol reduced the effect of these polyphenols on pial arteriolar diameter and leakage. These substances, administered together, prevented microvascular damage to a larger extent. CONCLUSION: Oleuropein and Pinoresinol were both able to protect pial microcirculation from I-reperfusion injury, to increase nitric oxide release and to reduce oxidative stress preserving pial blood flow distribution.
    Citation [3]

    Nutr Cancer. 2013;65(8):1208-18.

    Pinoresinol inhibits proliferation and induces differentiation on human HL60 leukemia cells.[Pubmed: 24099079]
    Pinoresinol (PIN), one of the simplest lignans, is the precursor of other dietary lignans that are present in whole-grain cereals, legumes, fruits, and other vegetables. Several experimental and epidemiological evidences suggest that lignans may prevent human cancer in different organs. In this study we investigated the chemopreventive properties of Pinoresinol on cell lines derived from different sites either expressing or not the functional tumor suppressor protein p53. It was found that Pinoresinol inhibited the proliferation of p53 wild type colon and prostate tumor cells (HCT116 and LNCaP) while in breast cells the inhibition of growth was observed only in p53 mutant cells (MDA-MB-231). A potent antiproliferative activity of Pinoresinol was also observed on p53 null cells HL60 (IC50% 8 μM), their multidrug resistant variant HL60R (IC50% 32 μM) and K562. On HL60 cells, Pinoresinol caused a block of cell cycle in the G0/G1 phase, induced a weak proapoptotic effect but it was a good trigger of differentiation (NBT reduction and CD11b expression). Pinoresinol caused an upregulation of the CDK inhibitor p21(WAF1/Cip1) both at mRNA and protein levels so suggesting that this could be a mechanism by which Pinoresinol reduced proliferation and induced differentiation on HL60 cells.
    Citation [4]

    J Nutr. 2012 Oct;142(10):1798-805.

    Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.[Pubmed: 22955517]
    Six lignan standards [secoisolariciresinol diglucoside (SDG), secoisolariciresinol (SECO), Pinoresinol (PINO), lariciresinol, matairesinol (MAT), and hydroxymatairesinol] and their colonic metabolites [enterolactone (ENL) and enterodiol] were studied. First, differentiated cells were exposed to SDG, SECO, Pinoresinol, or ENL at increasing concentrations for 4 h, and their cellular contents (before and after deconjugation) were determined by HPLC. Second, in IL-1β-stimulated confluent and/or differentiated cells, lignan effects were tested on different soluble proinflammatory mediators quantified by enzyme immunoassays and on the NF-κB activation pathway by using cells transiently transfected. SECO, Pinoresinol, and ENL, but not SDG, were taken up and partly conjugated by cells, which is a saturable conjugation process. Pinoresinol was the most efficiently conjugated (75% of total in cells). In inflamed cells, Pinoresinol significantly reduced IL-6 by 65% and 30% in confluent and differentiated cells, respectively, and cyclooxygenase (COX)-2-derived prostaglandin E(2) by 62% in confluent cells. In contrast, MAT increased significantly COX-2-derived prostaglandin E(2) in confluent cells. Moreover, PINO dose-dependently decreased IL-6 and macrophage chemoattractant protein-1 secretions and NF-κB activity. Our findings suggest that plant lignans can be absorbed and metabolized in the small intestine and, among the plant lignans tested, Pinoresinol exhibited the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism.
    Citation [5]

    J Pharmacol Sci. 2010;112(1):105-12.

    Hepatoprotective effect of pinoresinol on carbon tetrachloride-induced hepatic damage in mice.[Pubmed: 20093790]
    Forsythiae Fructus is known to have diuretic, anti-bacterial, and anti-inflammatory activities. This study examined the hepatoprotective effects of Pinoresinol, a lignan isolated from Forsythiae Fructus, against carbon tetrachloride (CCl(4))-induced liver injury. Mice were treated intraperitoneally with vehicle or Pinoresinol (25, 50, 100, and 200 mg/kg) 30 min before and 2 h after CCl4 (20 microl/kg) injection. In the vehicle-treated CCl(4 )group, serum aminotransferase activities were significantly increased 24 h after CCl4 injection, and these increases were attenuated by Pinoresinol at all doses. Hepatic glutathione contents were significantly decreased and lipid peroxidation was increased after CCl4 treatment. These changes were attenuated by 50 and 100 mg/kg of Pinoresinol. The levels of protein and mRNA expression of inflammatory mediators, including tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2, were significantly increased after CCl4 injection; and these increases were attenuated by Pinoresinol. Nuclear translocation of nuclear factor-kappaB (NF-kappaB) and phosphorylation of c-Jun, one of the components of activating protein 1 (AP-1), were inhibited by Pinoresinol. Our results suggest that Pinoresinol ameliorates CCl4)-induced acute liver injury, and this protection is likely due to anti-oxidative activity and down-regulation of inflammatory mediators through inhibition of NF-kappaB and AP-1.
    Citation [6]

    Molecules. 2010 May 14;15(5):3507-16.

    Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii.[Pubmed: 20657496 ]
    In this study, we investigated the antifungal activity and mechanism of action of (+)-Pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+)-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+)-Pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the (+)-Pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV) experiments. Therefore, the present study indicates that (+)-Pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.