• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Isovalerylshikonin
    Isovalerylshikonin
    Information
    CAS No. 52387-14-1 Price $318 / 10mg
    Catalog No.CFN95222Purity>95%
    Molecular Weight372.4Type of CompoundQuinones
    FormulaC21H24O6Physical DescriptionPowder
    Download     COA    MSDSSimilar structuralComparison (Web)
    Citing Use of our Products
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
    Size /Price /Stock 10 mM * 1 mL in DMSO / $307.6 / In-stock
    Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
    Our products had been exported to the following research institutions and universities, And still growing.
  • Technical University of Denmark (Denmark)
  • Sri Ramachandra University (India)
  • Michigan State University (USA)
  • University of British Columbia (Canada)
  • Monash University Malaysia (Malaysia)
  • University of Maryland (USA)
  • Vin?a Institute of Nuclear Scie... (Serbia)
  • Univerzita Karlova v Praze (Czech Republic)
  • Yale University (USA)
  • Chang Gung University (Taiwan)
  • Wageningen University (Netherlands)
  • More...
  • Package
    Featured Products
    3-Epioleanolic acid

    Catalog No: CFN92068
    CAS No: 25499-90-5
    Price: $388/10 mg
    Isochamaejasmine

    Catalog No: CFN92150
    CAS No: 93859-63-3
    Price: $418/5mg
    Kaempferol 3-O-arabinoside

    Catalog No: CFN97572
    CAS No: 99882-10-7
    Price: $398/5mg
    Pinoresinol diglucoside

    Catalog No: CFN99994
    CAS No: 63902-38-5
    Price: $100/20mg
    Glycitein

    Catalog No: CFN99106
    CAS No: 40957-83-3
    Price: $128/20mg
    Baicalin

    Catalog No: CFN99111
    CAS No: 21967-41-9
    Price: $40/20mg
    Ginsenoside Rg6

    Catalog No: CFN90565
    CAS No: 147419-93-0
    Price: $488/10mg
    Related Screening Libraries
    Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
    10 mM * 1 mL in DMSO / Inquiry / In-stock
    Related Libraries
  • Quinones Compound Library
  • MAPK Inhibitor Library
  • JNK Inhibitor Library
  • ERK Inhibitor Library
  • c-Myc Inhibitor Library
  • Antifection Inhibitor Library
  • Akt Inhibitor Library
  • AChR Inhibitor Library
  • Biological Activity
    Description: Isovalerylshikonin, a new resistance-modifying agent from Arnebia euchroma, supresses antimicrobial resistance of drug-resistant Staphylococcus aureus; it also has anti-mite activity. Isovalerylshikonin as a candidate of AChE inhibitor, it may prevent apoptotic cell death induced by hydrogen peroxide in human and rat neuronal SH-SY5Y and PC12 cells.
    Targets: AChR | MAPK | JNK | ERK | c-MYC | AKT | Antifection
    In vitro:
    Int J Antimicrob Agents. 2019 Jan;53(1):70-73.
    Isovalerylshikonin, a new resistance-modifying agent from Arnebia euchroma, supresses antimicrobial resistance of drug-resistant Staphylococcus aureus.[Pubmed: 30176356 ]
    Antimicrobial resistance is the greatest threat to the treatment of bacterial infectious diseases. The development of resistance-modifying agents (RMAs) represents a promising strategy to mitigate the spread of bacterial antimicrobial resistance.
    METHODS AND RESULTS:
    In this study, a natural product, Isovalerylshikonin (IVS), was isolated from Arnebia euchroma, a traditional Chinese medicine herb, that exhibited marginal antibacterial activity against drug-resistant Staphylococcus aureus RN4220, with a minimum inhibitory concentration (MIC) of 16 mg/L. In addition, a synergistic effect between IVS and streptomycin (STM) was detected by the microdilution antimicrobial chequerboard assay, with a reduction in the MIC of STM by up to 16-fold against strain RN4220. A bacterial ethidium bromide efflux assay and reverse transcription PCR were performed to investigate the synergistic mechanism. IVS significantly inhibited bacterial efflux and expression of msrA mRNA in vitro. A murine peritonitis/sepsis model was employed to test the in vivo synergistic activity of IVS and STM. IVS synergistically decreased bacterial counts with STM in peritoneal, spleen and liver tissue and increased mouse survival with STM in 7 days. The acute toxicity of IVS was tested and the 50% lethal dose (LD50) of IVS with a single exposure was 2.584 g/kg in mice.
    CONCLUSIONS:
    Overall, IVS, a low-toxicity RMA, exhibited synergistic antibacterial activities in vitro and in vivo against drug-resistant S. aureus. The effects were mediated by suppression of msrA mRNA expression and reduced bacterial efflux. In addition, these data support that IVS is a potential RMA against microbial resistance caused by the MsrA efflux pump.
    Molecules. 2017 Jun 16;22(6). pii: E1002.
    Identification of Onosma visianii Roots Extract and Purified Shikonin Derivatives as Potential Acaricidal Agents against Tetranychus urticae.[Pubmed: 28621748 ]
    There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds.
    METHODS AND RESULTS:
    In this research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested against Tetranychus urticae.
    CONCLUSIONS:
    All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and Isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.
    Isovalerylshikonin Description
    Source: The roots of Lithosperraum erythrorhizon Sieb. et Zucc.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    vibo-Quercitol

    Catalog No: CFN98778
    CAS No: 488-76-6
    Price: $218/20mg
    Glycycoumarin

    Catalog No: CFN89408
    CAS No: 94805-82-0
    Price: $268/10mg
    Cassiaside C

    Catalog No: CFN95120
    CAS No: 119170-52-4
    Price: $318/10mg
    Genipin-1-O-gentiobioside

    Catalog No: CFN98524
    CAS No: 29307-60-6
    Price: $218/20mg
    Syringaresinol

    Catalog No: CFN92060
    CAS No: 487-35-4
    Price: $268/5mg
    Parishin B

    Catalog No: CFN93113
    CAS No: 174972-79-3
    Price: $130/20mg
    6',7'-Dihydroxybergamottin

    Catalog No: CFN98307
    CAS No: 264234-05-1
    Price: $438/10mg
    Isomucronulatol

    Catalog No: CFN90839
    CAS No: 52250-35-8
    Price: $218/10mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.6853 mL 13.4264 mL 26.8528 mL 53.7057 mL 67.1321 mL
    5 mM 0.5371 mL 2.6853 mL 5.3706 mL 10.7411 mL 13.4264 mL
    10 mM 0.2685 mL 1.3426 mL 2.6853 mL 5.3706 mL 6.7132 mL
    50 mM 0.0537 mL 0.2685 mL 0.5371 mL 1.0741 mL 1.3426 mL
    100 mM 0.0269 mL 0.1343 mL 0.2685 mL 0.5371 mL 0.6713 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Protocol
    Kinase Assay:
    Oncotarget. 2015 Nov 17;6(36):38934-51.
    Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells.[Pubmed: 26472107 ]
    Leukemia remains life-threatening despite remarkable advances in chemotherapy. The poor prognosis and drug resistance are challenging treatment. Novel drugs are urgently needed. Shikonin, a natural naphthoquinone, has been previously shown by us to be particularly effective towards various leukemia cell lines compared to solid tumors. However, the underlying mechanisms are still poorly understood.
    METHODS AND RESULTS:
    Here, we investigated shikonin and 14 derivatives on U937 leukemia cells. Four derivatives (isobutyrylshikonin, 2-methylbutyrylshikonin, Isovalerylshikonin and β,β-dimethylacrylshikonin) were more active than shikonin. AnnexinV-PI analysis revealed that shikonins induced apoptosis. Cell cycle G1/S check point regulation and the transcription factor c-MYC, which plays a vital role in cell cycle regulation and proliferation, were identified as the most commonly down-regulated mechanisms upon treatment with shikonins in mRNA microarray hybridizations. Western blotting and DNA-binding assays confirmed the inhibition of c-MYC expression and transcriptional activity by shikonins. Reduction of c-MYC expression was closely associated with deregulated ERK, JNK MAPK and AKT activity, indicating their involvement in shikonin-triggered c-MYC inactivation. Molecular docking studies revealed that shikonin and its derivatives bind to the same DNA-binding domain of c-MYC as the known c-MYC inhibitors 10058-F4 and 10074-G5. This finding indicates that shikonins bind to c-MYC. The effect of shikonin on U937 cells was confirmed in other leukemia cell lines (Jurkat, Molt4, CCRF-CEM, and multidrug-resistant CEM/ADR5000), where shikonin also inhibited c-MYC expression and influenced phosphorylation of AKT, ERK1/2, and SAPK/JNK.
    CONCLUSIONS:
    In summary, inhibition of c-MYC and related pathways represents a novel mechanism of shikonin and its derivatives to explain their anti-leukemic activity.
    Cell Research:
    Evid Based Complement Alternat Med. 2013;2013:937370.
    Acetylshikonin, a Novel AChE Inhibitor, Inhibits Apoptosis via Upregulation of Heme Oxygenase-1 Expression in SH-SY5Y Cells.[Pubmed: 24302971 ]
    Acetylcholinesterase inhibitors are prominent alternative in current clinical treatment for AD patients. Therefore, there is a continued need to search for novel AChEIs with good clinical efficacy and less side effects.
    METHODS AND RESULTS:
    By using our in-house natural product database and AutoDock Vina as a tool in docking study, we have identified twelve phytochemicals (emodin, aloe-emodin, chrysophanol, and rhein in Rhei Radix Et Rhizoma; xanthotoxin, phellopterin, alloisoimperatorin, and imperatorin in Angelicae dahuricae Radix; shikonin, acetylshikonin, Isovalerylshikonin, and β,β-dimethylacrylshikonin in Arnebiae Radix) as candidates of AChEIs that were not previously reported in the literature. In addition to AChEI activity, a series of cell-based experiments were conducted for the investigation of their neuroprotective activities. We found that acetylshikonin and its derivatives prevented apoptotic cell death induced by hydrogen peroxide in human and rat neuronal SH-SY5Y and PC12 cells at 10 μM.
    CONCLUSIONS:
    We showed that acetylshikonin exhibited the most potent antiapoptosis activity through the inhibition of the generation of reactive oxygen species as well as protection of the loss of mitochondria membrane potential. Furthermore, we identified for the first time that the upregulation of heme oxygenase 1 by acetylshikonin is a key step mediating its antiapoptotic activity from oxidative stress in SH-SY5Y cells.