• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Sinapine
    Information
    CAS No. 18696-26-9 Price $298 / 10mg
    Catalog No.CFN00092Purity>=98%
    Molecular Weight310.36Type of CompoundAlkaloids
    FormulaC16H24NO5+Physical DescriptionPowder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Universidade Federal de Pernambu... (Brazil)
  • Osmania University (India)
  • St. Jude Children Research Hospi... (USA)
  • Univerzita Karlova v Praze (Czech Republic)
  • Seoul National University (Korea)
  • University of Malaya (Malaysia)
  • Aveiro University (Portugal)
  • University of Amsterdam (Netherlands)
  • Kitasato University (Japan)
  • The Australian National University (Australia)
  • University of Madras (India)
  • More...
  • Package
    Featured Products
    alpha-Amyrin

    Catalog No: CFN92377
    CAS No: 638-95-9
    Price: $318/5mg
    Deapi-platycoside E

    Catalog No: CFN92355
    CAS No: 849758-42-5
    Price: $468/10mg
    Glycitin

    Catalog No: CFN99105
    CAS No: 40246-10-4
    Price: $70/20mg
    Decursitin D

    Catalog No: CFN95002
    CAS No: 245446-61-1
    Price: $318/5mg
    Tenuifoliside A

    Catalog No: CFN90770
    CAS No: 139726-35-5
    Price: $368/20mg
    Sinapine Description
    Source: The seeds of Raphanus sativus L.
    Biological Activity or Inhibitors: 1. Sinapine, an alkaloid from seeds of the cruciferous species, can be used as an effective natural compound for chemo-resistance.
    2. Sinapine has antioxidant and radio-protective activities.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.2221 mL 16.1103 mL 32.2206 mL 64.4413 mL 80.5516 mL
    5 mM 0.6444 mL 3.2221 mL 6.4441 mL 12.8883 mL 16.1103 mL
    10 mM 0.3222 mL 1.611 mL 3.2221 mL 6.4441 mL 8.0552 mL
    50 mM 0.0644 mL 0.3222 mL 0.6444 mL 1.2888 mL 1.611 mL
    100 mM 0.0322 mL 0.1611 mL 0.3222 mL 0.6444 mL 0.8055 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Sinapine References Information
    Citation [1]

    Food Chem Toxicol. 2014 May;67:187-92.

    Sinapine as an active compound for inhibiting the proliferation of Caco-2 cells via downregulation of P-glycoprotein.[Pubmed: 24607798]
    Sinapine, an alkaloid from seeds of the cruciferous species, shows favorable biological activities such as antioxidant and radio-protective activities. However, the inhibitory effect of Sinapine on tumors, and the molecular mechanisms have not been completely understood thus far. In this study, we determined anti-proliferative effects of Sinapine. We examined the anti-tumor effects of the combination of Sinapine and doxorubicin. The results of the MTT assay and apoptosis showed that Sinapine increased the sensitivity of Caco-2 cells to doxorubicin in a dose-dependent manner, whereas no or less effect was observed in the cells treated with doxorubicin alone. The combination of Sinapine and doxorubicin had a synergistic effect and increased the cytotoxicity of doxorubicin against Caco-2 cells. Doxorubicin accumulation assay showed that Sinapine increased the intracellular accumulation of doxorubicin in dose-dependent manner. Immunoblotting and QT-PCR analysis showed that Sinapine suppressed P-glycoprotein (P-gp) expression via ubiquitination. A significant correlation was observed between the expression of p-ERK1/2 and P-gp. These results indicated that Sinapine played an important role in the down-regulation of P-gp expression through suppression of FGFR4-FRS2α-ERK1/2 signaling pathway. To our knowledge, this is the first study to show that Sinapine can be used as an effective natural compound for chemo-resistance.
    Citation [2]

    PLoS One. 2015 Jan 21;10(1):e0116470.

    Characterization of the factors that influence sinapine concentration in rapeseed meal during fermentation.[Pubmed: 25606856]
    The Sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the Sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of Sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of Sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90 °C and 105 °C, respectively. During drying, the concentration of Sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of Sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of Sinapine in rapeseed meal.
    Citation [3]

    J Agric Food Chem. 2011 Mar 23;59(6):2148-56.

    Sinapine detection in radish taproot using surface desorption atmospheric pressure chemical ionization mass spectrometry.[Pubmed: 21332204]
    Benefited by direct detection with no sample preparation, Sinapine, a bioactive chemical usually found in various seeds of Brassica plants, has been unambiguously detected in radish taproot (Raphanus sativus) tissue using a liquid-assisted surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS).Sinapine was directly detected and identified by tandem DAPCI-MS experiments without sample pretreatment. The typical relative standard deviation (RSD) of this method for Sinapine detection was 5-8% for six measurements (S/N=3). The dynamic response range was 10(-12)-10(-7) g/cm2 for Sinapine on the radish skin surface. The discovery of Sinapine in radish taproot was validated by using HPLC-UV methods. The data demonstrated that DAPCI assisted by solvent enhanced the overall efficiency of the desorption/ionization process, enabling sensitive detection of bioactive compounds in plant tissue.
    Citation [4]

    Plant Physiol. 2011 Mar;155(3):1127-45.

    Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism.[Pubmed: 21248075]
    Sinapine (O-sinapoylcholine) is the predominant phenolic compound in a complex group of sinapate esters in seeds of oilseed rape (Brassica napus). Sinapine has antinutritive activity and prevents the use of seed protein for food and feed. A strategy was developed to lower its content in seeds by expressing an enzyme that hydrolyzes Sinapine in developing rape seeds. During early stages of seedling development, a Sinapine esterase (BnSCE3) hydrolyzes Sinapine, releasing choline and sinapate. Two distinct single-copy transgene insertion lines were isolated and propagated to generate homozygous lines, which were subjected to comprehensive phenotyping. Sinapine levels of transgenic seeds were less than 5% of wild-type levels, whereas choline levels were increased. Examination of metabolic profiles of transgenic seeds indicated that besides suppression of Sinapine accumulation, there were other dramatic differences in primary and secondary metabolism.
    Citation [5]

    Shi Yan Sheng Wu Xue Bao. 1993 Sep;26(3):269-74.

    Radiation protection effects of sinapine on Drosophila melanogaster in a sex-linked recessive lethal test system[Pubmed: 8191802]
    Sinapine, which has shown radiation protection effects on barley, wheat and mouse, is one of such substances distributed in cruciferous plants. In this paper, the radiation protection effects of Sinapine on Drosophila melanogaster in a sex-linked recessive lethal (SLRL) test system were observed. The Sinapine solution could be fed to the D. melanogaster (Oregon K). 40 Gy X-irradiation induced SLRL mutation rate of 8.96%. However, if 10 mg/ml Sinapine which was found to have no physiological toxicity or harmful effects on its reproductive function, was fed before 40 Gy X-irradiation, the SLRL mutation rate could be reduced to 0.40%, which was within the range of spontaneous SLRL mutation rate of Oregon K Drosophila, i.e. 0-0.4%. The potential of the using of the very strong radiation protection effects of Sinapine in anticarcinogenesis was also discussed.