• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Chrysosplenol D
    Chrysosplenol D
    Information
    CAS No. 14965-20-9 Price $298 / 10mg
    Catalog No.CFN99622Purity> 95%
    Molecular Weight360.3 Type of CompoundFlavonoids
    FormulaC18H16O8Physical DescriptionYellow powder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • University of Medicine and Pharm... (Romania)
  • National Cancer Center Research ... (Japan)
  • Sant Gadge Baba Amravati Univers... (India)
  • Stanford University (USA)
  • Kitasato University (Japan)
  • Julius Kühn-Institut (Germany)
  • Universidad de Ciencias y Artes ... (Mexico)
  • Ain Shams University (Egypt)
  • University of Melbourne (Australia)
  • University of Lodz (Poland)
  • University of Wuerzburg (Germany)
  • More...
  • Package
    Featured Products
    Sanggenone K

    Catalog No: CFN92416
    CAS No: 86450-77-3
    Price: $533/5mg
    Tanshindiol C

    Catalog No: CFN92147
    CAS No: 97465-71-9
    Price: $398/5mg
    (-)-Pinoresinol

    Catalog No: CFN92287
    CAS No: 81446-29-9
    Price: $268/5mg
    Chlorogenic acid

    Catalog No: CFN99116
    CAS No: 327-97-9
    Price: $50/20mg
    Neochlorogenic acid

    Catalog No: CFN97472
    CAS No: 906-33-2
    Price: $188/20mg
    Chrysosplenol D Description
    Source: The herbs of Artemisia annua L.
    Biological Activity or Inhibitors: 1. Chrysosplenol D inhibited inflammation in vitro and in vivo.
    2. Chrysosplenol D is important antibiotics and antimalarials.
    3. Chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1, inhibited cell migration, and reduced LPS-induced IκB and c-JUN phosphorylation in Raw264.7 cells.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.7755 mL 13.8773 mL 27.7546 mL 55.5093 mL 69.3866 mL
    5 mM 0.5551 mL 2.7755 mL 5.5509 mL 11.1019 mL 13.8773 mL
    10 mM 0.2775 mL 1.3877 mL 2.7755 mL 5.5509 mL 6.9387 mL
    50 mM 0.0555 mL 0.2775 mL 0.5551 mL 1.1102 mL 1.3877 mL
    100 mM 0.0278 mL 0.1388 mL 0.2775 mL 0.5551 mL 0.6939 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Chrysosplenol D References Information
    Citation [1]

    Toxicol Appl Pharmacol. 2015 Apr 17.

    Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo.[Pubmed: 25891417]
    BACKGROUND: The aim of our experiments was to investigate the anti-inflammatory properties of casticin and Chrysosplenol D, two flavonoids present in Artemisia annua L. METHODS: Topical inflammation was induced in ICR mice using croton oil. Mice were then treated with casticin or Chrysosplenol D. Cutaneous histological changes and edema were assessed. ICR mice were intragastrically administrated with casticin or Chrysosplenol D followed by intraperitoneal injection of lipopolysaccharide (LPS). Mouse Raw264.7 macrophage cells were incubated with casticin or Chrysosplenol D. Intracellular phosphorylation was detected, and migration was assessed by trans-well assay. HT-29/NFκB-luc cells were incubated with casticin or Chrysosplenol D in the presence or absence of LPS, and NF-κB activation was quantified. RESULTS: In mice, administration of casticin (0.5, 1 and 1.5μmol/cm2) and Chrysosplenol D (1 and 1.5μmol/cm2) inhibited croton oil-induced ear edema (casticin: 29.39-64.95%; Chrysosplenol D: 37.76-65.89%, all P<0.05) in a manner similar to indomethacin (0.5, 1 and 1.5μmol/cm2; 55.63-84.58%). Casticin (0.07, 0.13 and 0.27mmol/kg) and Chrysosplenol D (0.07, 0.14 and 0.28mmol/kg) protected against LPS-induced systemic inflammatory response syndrome (SIRS) in mice (all P<0.05), in a manner similar to dexamethasone (0.03mmol/kg). Casticin and Chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1, inhibited cell migration, and reduced LPS-induced IκB and c-JUN phosphorylation in Raw264.7 cells. JNK inhibitor SP600125 blocked the inhibitory effect of Chrysosplenol D on cytokine release. CONCLUSIONS: The flavonoids casticin and Chrysosplenol D from A. annua L. inhibited inflammation in vitro and in vivo.
    Citation [2]

    J Nat Prod. 2008 Nov;71(11):1961-2.

    Direct synthesis of chrysosplenol D.[Pubmed: 18855445]
    An aldol condensation and an Algar-Flynn-Oyamada oxidative cyclization were key steps in the direct synthesis of Chrysosplenol D, an efflux pump inhibitor that can potentiate the activity of commercially important antibiotics and antimalarials.
    Citation [3]

    Zhongguo Zhong Yao Za Zhi. 2013 May;38(10):1493-9.

    [Effect of fertilization on phenolic components and antioxidant activities of Artemisia annua].[Pubmed: 23947123]
    OBJECTIVE: A pot experiment with variable fertilizer treatments was carried out to study the influence of fertilization on the concentration and accumulation of polyphenols, scopoletin, Chrysosplenol D and chrysosplenetin in roots, stems and leaves and their antioxidant activities. The main aims were to fertilize scientifically in cultivation of Artemisia annua and improve the quality of the harvest organs. METHOD: These active components in leaves, stems and roots in the squaring stage were analyzed by HPLC and antioxidant activities of the extracts were evaluated by ultraviolet visible light colorimetric method. RESULT: The result showed the highest concentration of polyphenols, scopoletin, Chrysosplenol D and chrysosplenetin was in leaves, followed by stems and the lowest in roots. The antioxidant activities of the leaf extracts correlated positively with the concentrations of polyphenols, scopoletin, Chrysosplenol D and chrysosplenetin. Furthermore, fertilization promoted significantly the growth of A. annua, the biomass was increased by 57.37% (chemical fertilizer), 91.63% (mixture of chemical fertilizer and manure) and 92.27% (manure), respectively, compared to the blank control (without fertilizer). Fertilization, particularly mixture fertilization of chemical fertilizer and manure, increased generally the concentration and accumulation of polyphenols, scopoletin, Chrysosplenol D and chrysosplenetin as well as DPPH x scavenging ratio. CONCLUSION: Scopoletin, Chrysosplenol D and chrysosplenetin could be synthesized and stored mainly in leaves. The leaves might thus be the chief organ of A. annua for medical treatment. Finally, the mixture fertilization of chemical fertilizer and manure should be used to increase the yield and quality of A. annua.
    Citation [4]

    Nat Prod Res. 2014;28(11):812-8.

    A new α-glucosidase inhibitor from Achillea fragrantissima (Forssk.) Sch. Bip. growing in Egypt.[Pubmed: 24666348]
    chondrillasterol (1), quercetin-3,6,7-trimethyl ether (Chrysosplenol D) (2), isovitexin-4'-methyl ether (3) and isovitexin (4). The structure of the new compound (5) was elucidated on the basis of its spectral data, including HR-FAB-MS, UV, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, HSQC and HMBC. The new compound (5) exhibited the most significant α-glucosidase inhibitory activity (IC₅₀ 1.5 ± 0.09 μg/mL). Under the assay conditions, all the tested compounds were more potent than the positive control acarbose (IC50 224 ± 2.31 μg/mL).