• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    CAS No. 62499-27-8 Price $30 / 20mg
    Catalog No.CFN99549Purity>=98%
    Molecular Weight286.28Type of CompoundPhenols
    FormulaC13H18O7Physical DescriptionPowder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Lund University (Sweden)
  • Vin?a Institute of Nuclear Scien... (Serbia)
  • University of Padjajaran (Indonesia)
  • Sri Ramachandra University (India)
  • University of Illinois at Chicago (USA)
  • Weizmann Institute of Science (Israel)
  • MTT Agrifood Research Finland (Finland)
  • Shanghai Institute of Organic Ch... (China)
  • Periyar University (India)
  • Universidade de Franca (Brazil)
  • Sant Gadge Baba Amravati Univers... (India)
  • More...
  • Package
    Featured Products

    Catalog No: CFN92169
    CAS No: 102607-41-0
    Price: $498/5mg
    Eleutheroside E

    Catalog No: CFN99984
    CAS No: 39432-56-9
    Price: $88/20mg

    Catalog No: CFN95007
    CAS No: 135309-02-3
    Price: $418/5mg
    Deapi-platycodin D3

    Catalog No: CFN92269
    CAS No: 67884-05-3
    Price: $388/5mg

    Catalog No: CFN98375
    CAS No: 301-19-9
    Price: $498/10mg
    Biological Activity
    Description: Gastrodin has antioxidant, cytoprotective, anticonvulsant, and anti-inflammation activities, it may be useful in the prevention and treatment of osteoporosis. Gastrodin also has protective effect to the prevention of neurotoxicity induced by ischemic stroke, the mechanism is by improving anti-oxidant and anti-inflammation activities, inhibiting apoptosis pathway, and increasing Akt phosphorylation and Nrf2 expression. Gastrodin activates PI3-K/Akt signaling and that inhibition of this pathway reverses the inhibitory effects of gastrodin on NF-κB and MAPKs activation in H9c2 cardiomyocytes.
    Targets: GABA Receptor | ROS | Nrf2 | Bcl-2/Bax | HO-1 | p38MAPK | 5-HT Receptor | Caspase | Akt | TNF-α | IL Receptor | NOS | COX | PI3K | NF-kB | ERK | IkB | IKK
    In vitro:
    J Neurosci Res. 2003 Feb 15;71(4):534-43.
    Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils.[Pubmed: 12548709 ]
    Gastrodin is one of the natural compound isolated from Gastrodia elata and has known anticonvulsant effects, although the exact pharmacological principles of this natural compound and its effects on other aspects of gamma-aminobutyric acid (GABA) metabolism in vivo have not been explored.
    Therefore, in the present study, the effects of Gastrodin on GABA metabolism in the gerbil hippocampus were examined, in an effort to identify the antiepileptic characteristics of this substance. Gastrodin reduced the seizure score in the treated group, although the immunoreactivities of GABA synthetic enzymes and GABA transporters were unaltered in Gastrodin-treated animals. Interestingly, in the Gastrodin-treated group, GABA transaminase (GABA-T) immunoreactivity in the hippocampus, particularly in neurons, was significantly decreased. In the Gastrodin-treated group, both succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) immunoreactivities in the hippocampus was also decreased significantly, which stood in contrast to the nontreated group, in which strong SSADH and SSAR immunoreactivities were detected.
    From the neuroanatomical viewpoint, these findings suggest that Gastrodin may cause the elevation of GABA concentration by inhibiting the GABA shunt.
    In vivo:
    Bone. 2015 Apr;73:132-44.
    Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species.[Pubmed: 25554600]
    Increased levels of reactive oxygen species (ROS) are a crucial pathogenic factor of osteoporosis. Gastrodin, isolated from the traditional Chinese herbal agent Gastrodia elata, is a potent antioxidant. We hypothesized that Gastrodin demonstrates protective effects against osteoporosis by partially reducing reactive oxygen species in human bone marrow mesenchymal stem cells (hBMMSCs) and a macrophage cell line (RAW264.7 cells).
    We investigated Gastrodin on osteogenic and adipogenic differentiation under oxidative stress in hBMMSCs. We also tested Gastrodin on osteoclastic differentiation in RAW264.7 cells. Hydrogen peroxide (H2O2) was used to establish an oxidative cell injury model. Our results showed that Gastrodin significantly promoted the proliferation of hBMMSCs, improved some osteogenic markers, reduced lipid generation and inhibited the mRNA expression of several adipogenic genes in hBMMSCs. Moreover, Gastrodin reduced the number of osteoclasts, TRAP activity and the expression of osteoclast-specific genes in RAW264.7 cells. Gastrodin suppressed the production of reactive oxygen species in both hBMMSCs and RAW264.7 cells. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our data revealed that Gastrodin treatment reduced the activity of serum bone degradation markers, such as CTX-1 and TRAP. Importantly, it ameliorated the micro-architecture of trabecular bones. Gastrodin decreased osteoclast numbers in vivo by TRAP staining.
    To conclude, these results indicated that Gastrodin shows protective effects against osteoporosis linking to a reduction in reactive oxygen species, suggesting that Gastrodin may be useful in the prevention and treatment of osteoporosis.
    Neurochem Res. 2015 Apr;40(4):661-73.
    Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway.[Pubmed: 25582916 ]
    Gastrodin (GAS), an active constituent of the Chinese herbal medicine Tianma, has anti-oxidant and anti-inflammation activities but its protective effect to the prevention of neurotoxicity induced by ischemic stroke is unclear.
    In the present study, middle cerebral artery occlusion (MCAO) was used to establish a mice ischemic stroke model. Infarct volume ratio and neurobehavioral score were evaluated, Nissl staining was performed and the expression of cleaved Caspase 3, Bax and B cell lymphoma 2 (Bcl-2) were assessed at 24 h or 7 days after reperfusion. In addition, the total superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, as well as the expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), SOD1, phospho-Akt and total Akt and TNF-α and IL-1β in the ischemic hemispheres were also observed at 6 h after reperfusion to assess oxidative stress and inflammatory changes after GAS treatment. It was found that GAS, especially at high dose (100 mg/kg) reduced tested neuronal injury and neurobehavioral deficient in MCAO mice. Enhanced expression of cleaved Caspase 3 and Bax and decreased expression of Bcl-2 by MCAO were also reversed by GAS. Moreover, GAS treatment decreased the MDA content and the expression of TNF-α and IL-1β, and increased amount of SOD activity and the expression of HO-1 and SOD1 in GAS-treated ischemic brain. Furthermore, GAS significantly increased Akt phosphorylation and Nrf2 expression.
    These results support the neuroprotective effects of GAS, and the activation of Akt/Nrf2 pathway may play a critical role in the pharmacological action of GAS.
    Gastrodin Description
    Source: The herbs of Gastrodia elata BL.
    Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Semilicoisoflavone B

    Catalog No: CFN90818
    CAS No: 129280-33-7
    Price: $318/5mg
    Angelol G

    Catalog No: CFN92988
    CAS No: 83199-38-6
    Price: $198/10mg
    Ginsenoside Rh4

    Catalog No: CFN92594
    CAS No: 174721-08-5
    Price: $368/10mg
    Caohuoside E

    Catalog No: CFN95016
    CAS No: 174286-23-8
    Price: $388/5mg

    Catalog No: CFN92288
    CAS No: 24404-50-0
    Price: $338/5mg

    Catalog No: CFN98175
    CAS No: 13476-25-0
    Price: $138/20mg

    Catalog No: CFN92007
    CAS No: 19202-36-9
    Price: $318/10mg
    Chrysin 6-C-glucoside 8-C-arabinos...

    Catalog No: CFN92285
    CAS No: 185145-34-0
    Price: $368/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.4931 mL 17.4654 mL 34.9308 mL 69.8617 mL 87.3271 mL
    5 mM 0.6986 mL 3.4931 mL 6.9862 mL 13.9723 mL 17.4654 mL
    10 mM 0.3493 mL 1.7465 mL 3.4931 mL 6.9862 mL 8.7327 mL
    50 mM 0.0699 mL 0.3493 mL 0.6986 mL 1.3972 mL 1.7465 mL
    100 mM 0.0349 mL 0.1747 mL 0.3493 mL 0.6986 mL 0.8733 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Kinase Assay:
    Neurochem Int. 2014 Sep;75:79-88.
    Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells.[Pubmed: 24932697]
    Although the etiology of PD remains unclear, increasing evidence has shown that oxidative stress plays an important role in its pathogenesis and that of other neurodegenerative disorders. The phenolic glucoside Gastrodin, a main constituent of a Chinese herbal medicine Gastrodia elata (GE) Blume, has been known to display antioxidant activity.
    The present study aimed to investigate the protective effects of Gastrodin on 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative cytotoxicity in human dopaminergic SH-SY5Y cells and the underlying mechanism for this neuroprotection. Results indicate that pre-treatment with Gastrodin for 1h significantly reduced the MPP(+)-induced viability loss, apoptotic rate and attenuated MPP(+)-mediated ROS production. In addition, Gastrodin inhibited MPP(+)-induced lowered membrane potential, decreased Bcl-2/Bax ratio. Moreover, we have revealed the Gastrodin increased Nrf2 nuclear translocation, which is upstream of heme oxygenase-1 (HO-1) expression and for the first time revealed Gastrodin could increased antioxidant enzyme HO-1 expression in concentration-dependent and time-dependent manners. HO-1 siRNA transfection was employed, and confirmed Gastrodin could active the expression of HO-1. And the increase in HO-1 expression was correlated with the protective effect of Gastrodin against MPP(+)-induced injury. Because the inhibitor of HO-1 activity, ZnPP reversed the protective effect of Gastrodin against MPP(+)-induced cell death. We also demonstrated that the specific p38 MAPK inhibitor, SB203580, concentration-dependently blocked on Gastrodin-induced HO-1 expression, and meanwhile SB203580 reversed the protective effect of Gastrodin against MPP(+)-induced cell death.
    Taken together, these findings suggest that Gastrodin can induce HO-1 expression through activation of p38 MAPK/Nrf2 signaling pathway, thereby protecting the SH-SY5Y cells from MPP(+)-induced oxidative cell death. Thus our study indicates that Gastrodin has a partial cytoprotective role in dopaminergic cell culture systems and could be of importance for the treatment of PD and other oxidative stress-related diseases.
    Biochem Pharmacol. 2013 Apr 15;85(8):1124-33.
    Gastrodin attenuation of the inflammatory response in H9c2 cardiomyocytes involves inhibition of NF-κB and MAPKs activation via the phosphatidylinositol 3-kinase signaling.[Pubmed: 23376120 ]
    The phenolic glucoside Gastrodin, a main constituent of a Chinese traditional herbal medicine, has been known to display several biological and pharmacological properties. However, the role and precise molecular mechanisms explaining how Gastrodin suppresses the inflammatory response in septic cardiac dysfunction are unknown.
    To study this, rat H9c2 cardiomyocytes were treated with Gastrodin and/or lipopolysaccharide (LPS). Our results showed that Gastrodin treatment strongly suppressed nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) family activation and upregulation of the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in LPS-stimulated H9c2 cardiomyocytes. Simultaneously, Gastrodin obviously upregulated the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling in a dose-dependent manner. However, wortmannin, a specific PI3-K inhibitor, blocked the inhibitory effects of Gastrodin on LPS-stimulated H9c2 cardiomyocytes. Furthermore, PI3-K/Akt inhibition partially abolished the inhibitory effects of Gastrodin on the phosphorylation of inhibitor κB-α (IκB-α), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and activity of NF-κB.
    Here we report activation of the PI3-K/Akt signaling by Gastrodin and that inhibition of this pathway reverses the inhibitory effects of Gastrodin on NF-κB and MAPKs activation in H9c2 cardiomyocytes.
    Animal Research:
    Neurosci Lett. 2015 May 6;594:40-5.
    Ameliorative effect of gastrodin on 3,3'-iminodipropionitrile-induced memory impairment in rats.[Pubmed: 25817367]
    3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives inducing neurotoxicity, causes the dyskinetic syndrome and cognitive impairment. Gastrodin is widely used to treat neurological disorders and showed to improve cognitive functions.
    The present study aimed to determine whether treatment with Gastrodin can attenuate IDPN-induced impairment of memory consolidation in the passive avoidance (PA) task, and to explore the possible neural mechanisms. Our results showed that intragastric administration of Gastrodin (200mg/kg) reversed the IDPN-induced impairment of memory consolidation as indicated by the prolonged retention latency in the PA task. Furthermore, Gastrodin reverted IDPN-induced reduction of serotonin (5-HT) and elevation of serotonin turnover ratio. Gastrodin treatment prevented the increase of serotonin transporter (SERT) and the decrease of serotonin 1A (5-HT1A) receptor expression in the hippocampus of IDPN-treated rats.
    These results suggest that long-term Gastrodin treatment could represent a novel pharmacological strategy for IDPN-induced memory impairment, as well that its protective effect is mediated through normalization of the serotoninergic system.
    PLoS One. 2012;7(6):e39647.
    Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons.[Pubmed: 22761855 ]
    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients' quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, Gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood.
    By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of Gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of Gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of Gastrodin, we examined the effects of Gastrodin on transient sodium currents (I(NaT)) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I(NaT) and a decrease of potassium currents, especially slowly inactivating potassium currents (I(AS)); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I(NaT) and total potassium current as well as I(AS) currents induced by STZ were normalized by GAS.
    This study provides a clear cellular basis for the peripheral analgesic action of Gastrodin for the treatment of chronic pain, including PDN.