• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Geraniin
    Information
    CAS No. 60976-49-0 Price $168 / 20mg
    Catalog No.CFN90256Purity>=98%
    Molecular Weight952.64Type of CompoundPhenols
    FormulaC41H28O27Physical DescriptionPowder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Kyushu University (Japan)
  • Calcutta University (India)
  • Ateneo de Manila University (Philippines)
  • Kyoto University (Japan)
  • Aarhus University (Denmark)
  • University of Melbourne (Australia)
  • Johannes Gutenberg University Ma... (Germany)
  • Sri Ramachandra University (India)
  • Medizinische Universit?t Wien (Austria)
  • Copenhagen University (Denmark)
  • Universite Libre de Bruxelles (Belgium)
  • More...
  • Package
    Featured Products
    Moracin M

    Catalog No: CFN92327
    CAS No: 56317-21-6
    Price: $418/5mg
    Germacrone

    Catalog No: CFN98133
    CAS No: 6902-91-6
    Price: $80/20mg
    2,4'-Dihydroxybenzophenone

    Catalog No: CFN92400
    CAS No: 606-12-2
    Price: $70/20mg
    Bruceine D

    Catalog No: CFN90771
    CAS No: 21499-66-1
    Price: $318/10mg
    Syringaresinol-di-O-glucoside

    Catalog No: CFN90458
    CAS No: 66791-77-3
    Price: $288/20mg
    Geraniin Description
    Source: The herbs of Phyllanthus urinaria L.
    Biological Activity or Inhibitors: 1. Geraniin has a protective effect against OVX-induced rat osteoporosis.
    2. Geraniin has cytotoxic activity towards cancer cells in vitro and in vivo.
    3. Geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo, is a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure.
    4. Geraniin has anti-oxidant activity, induces Nrf2-mediated expression of antioxidant enzymes HO-1 and NQO1, presumably via PI3K/AKT and ERK1/2 signaling pathways, thereby protecting cells from H2O2-induced oxidative cell death.
    5. Geraniin presents radioprotective effects by regulating DNA damage on splenocytes, exerting immunostimulatory capacities and inhibiting apoptosis of radiosensitive immune cells and jejunal crypt cells.
    Solvent: Pyridine, Methanol, Ethanol, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 1.0497 mL 5.2486 mL 10.4971 mL 20.9943 mL 26.2429 mL
    5 mM 0.2099 mL 1.0497 mL 2.0994 mL 4.1989 mL 5.2486 mL
    10 mM 0.105 mL 0.5249 mL 1.0497 mL 2.0994 mL 2.6243 mL
    50 mM 0.021 mL 0.105 mL 0.2099 mL 0.4199 mL 0.5249 mL
    100 mM 0.0105 mL 0.0525 mL 0.105 mL 0.2099 mL 0.2624 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Geraniin References Information
    Citation [1]

    Exp Cell Res. 2015 Jan 1;330(1):91-101.

    Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model.[Pubmed: 25016282]
    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that Geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which Geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, Geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated Geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that Geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure.
    Citation [2]

    Biochim Biophys Acta. 2015 Apr 23;1850(9):1751-1761.

    Geraniin exerts cytoprotective effect against cellular oxidative stress by upregulation of Nrf2-mediated antioxidant enzyme expression via PI3K/AKT and ERK1/2 pathway.[Pubmed: 25917210]
    BACKGROUND: Geraniin, an active compound with remarkable antioxidant activity, was isolated from Geranium sibiricum. The present study aimed to investigate whether Geraniin has the ability to activate Nrf2, induce antioxidant enzyme expression and protect cells from oxidative damage. METHODS: The cells were pretreated with Geraniin for 24h and exposed to hydrogen peroxide (H2O2) for 4h. Intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential and apoptosis were measured. We also investigated intracellular glutathione (GSH) levels and changes in nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling cascade in cells treated with Geraniin. RESULTS: We investigated the protective effects of Geraniin against H2O2-induced apoptosis in HepG2 cells. Geraniin significantly reduced H2O2-induced oxidative damage in a dose dependent manner. Further, Geraniin induced the expression of heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase-1 (NQO1) and level of glutathione (GSH) in a concentration- and time-dependent manner, and increased Nrf2 nuclear translocation. The Nrf2-related cytoprotective effects of Geraniin were PI3K/AKT and extracellular signal-regulated protein kinase1/2 (ERK1/2) pathway-dependent. However, inhibitors of PI3K/AKT and ERK1/2 (LY294002 or U0126) not only suppressed Geraniin-induced nuclear translocation of Nrf2 but also abolished the expression of HO-1, NQO1 and GSH. CONCLUSIONS: These results demonstrated that Geraniin induced Nrf2-mediated expression of antioxidant enzymes HO-1 and NQO1, presumably via PI3K/AKT and ERK1/2 signaling pathways, thereby protecting cells from H2O2-induced oxidative cell death. GENERAL SIGNIFICANCE: Geraniin, at least in part, offers an antioxidant defense capacity to protect cells from the oxidative stress-related diseases.
    Citation [3]

    Bioorg Med Chem Lett. 2015 Feb 1;25(3):673-9.

    Osteoprotective effect of geraniin against ovariectomy-induced bone loss in rats.[Pubmed: 25532904]
    In the present study, we investigated the antiosteoporotic effect of Geraniin on osteoporosis induced by OVX in rats. The analysis of biochemical parameters showed that Geraniin could significantly increase serum calcium, estradiol and calcitonin levels, and decrease serum ALP, tartrate-resistant acid phosphatase, serum crosslinked C-terminal telopeptide of type I collagen, and urinary deoxypyridinoline/creatinine ratio levels, respectively. Geraniin was also found to prevent OVX-induced bone loss in bone mineral density and bone mineral content, to elevate femur weight and bone calcium content, and to enhance the bone mechanical properties as compared with OVX group. In addition, Geraniin was demonstrated to improve the histomorphological parameters of OVX-induced bone loss, including bone trabecular number, thickness, and separation. These results indicated that Geraniin have a protective effect against OVX-induced rat osteoporosis.
    Citation [4]

    Can J Physiol Pharmacol. 2013 Dec;91(12):1016-24.

    Geraniin induces apoptotic cell death in human lung adenocarcinoma A549 cells in vitro and in vivo.[Pubmed: 24289071]
    Geraniin has previously been reported to possess extensive biological activity. In this study, we reported that Geraniin is an inhibitor of tumor activity in vitro and in vivo. Geraniin suppressed the proliferation of A549 cells in a dose- and time-dependent manner. Geraniin arrested the cell cycle in the S phase and induced a significant accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. Western blot analysis showed that Geraniin inhibited Bcl-2 expression and induced Bax expression to disintegrate the outer mitochondrial membrane and cause cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascades. Additionally, Geraniin resulted in tumor growth inhibition in A549 xenografts. Our results indicate cytotoxic activity of Geraniin towards cancer cells in vitro and in vivo.
    Citation [5]

    Food Chem Toxicol. 2013 Jul;57:147-53.

    Geraniin down regulates gamma radiation-induced apoptosis by suppressing DNA damage.[Pubmed: 23541438]
    Gamma ray irradiation triggers DNA damage and apoptosis of proliferating stem cells and peripheral immune cells, resulting in the destruction of intestinal crypts and lymphoid system. Geraniin is a natural compound extracts from an aquatic plant Nymphaea tetragona and possesses good antioxidant property. In this study, we demonstrate that Geraniin rescues radiosensitive splenocytes and jejunal crypt cells from radiation-induced DNA damage and apoptosis. Isolated splenocytes from C57BL/6 mice treated with Geraniin were protected against radiation injury of 2 Gy irradiation through the enhancement of the proliferation and attenuation of DNA damage. Also, Geraniin inhibited apoptosis in radiosensitive splenocytes by reducing the expression level and immunoreactivity of proapoptotic p53 and Bax and increasing those of anti-apoptotic Bcl-2. In mice exposed to radiation, Geraniin treatment protected splenocytes and intestinal crypt cells from radiation-induced cell death. Our results suggest that Geraniin presents radioprotective effects by regulating DNA damage on splenocytes, exerting immunostimulatory capacities and inhibiting apoptosis of radiosensitive immune cells and jejunal crypt cells. Therefore, Geraniin can be a radioprotective agent against γ-irradiation exposure.