Science | Nature | Cell | View More
Natural Products
Nothofagin
Nothofagin
ChemFaces products have been cited in many studies from excellent and top scientific journals
Product Name Nothofagin
Price:
CAS No.: 11023-94-2
Catalog No.: CFN92888
Molecular Formula: C21H24O10
Molecular Weight: 436.4 g/mol
Purity: >=98%
Type of Compound: Chalcones
Physical Desc.: Powder
Source: The heartwoods of Nothofagus fusca
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Download: COA    MSDS    SDF    Manual
Similar structural: Comparison (Web)  (SDF)
Guestbook:
Contact Us
Order & Inquiry & Tech Support

Tel: (0086)-27-84237683
Tech: service@chemfaces.com
Order: manager@chemfaces.com
Address: 176, CheCheng Eest Rd., WETDZ, Wuhan, Hubei 430056, PRC
How to Order
Orders via your E-mail:

1. Product number / Name / CAS No.
2. Delivery address
3. Ordering/billing address
4. Contact information
Order: manager@chemfaces.com
Delivery time
Delivery & Payment method

1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

2. We accept: Wire transfer & Credit card & Paypal
Citing Use of our Products
* Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
Size /Price /Stock 10 mM * 1 mL in DMSO / Inquiry
Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
Our products had been exported to the following research institutions and universities, And still growing.
  • Heinrich-Heine-University Düss... (Germany)
  • Monash University Sunway Campus (Malaysia)
  • Lodz University of Technology (Poland)
  • Institute of Chinese Materia Me... (China)
  • Martin Luther University of Hal... (Germany)
  • Center for protein Engineering ... (Belgium)
  • University of Wuerzburg (Germany)
  • Julius Kühn-Institut (Germany)
  • Universita' Degli Studi Di Cagl... (Italy)
  • Sri Sai Aditya Institute of Pha... (India)
  • Leibniz-Institut für Pflanzenb... (Germany)
  • More...
Package
Featured Products
Soyasaponin Ac

Catalog No: CFN90774
CAS No: 133882-74-3
Price: $ / mg
Polyporenic acid C

Catalog No: CFN92739
CAS No: 465-18-9
Price: $268/10mg
Afzelin

Catalog No: CFN98757
CAS No: 482-39-3
Price: $288/20mg
Rosavin

Catalog No: CFN99179
CAS No: 84954-92-7
Price: $68/20mg
Chebulanin

Catalog No: CFN92294
CAS No: 166833-80-3
Price: $ / mg
Aconitine

Catalog No: CFN99915
CAS No: 302-27-2
Price: $80/20mg
Hyperoside

Catalog No: CFN98754
CAS No: 482-36-0
Price: $50/20mg
Isorhamnetin

Catalog No: CFN98735
CAS No: 480-19-3
Price: $60/20mg
Beta-mangostin

Catalog No: CFN99723
CAS No: 20931-37-7
Price: $218/10mg
Cyanidin-3-O-arabinoside chloride

Catalog No: CFN92041
CAS No: 111613-04-8
Price: $318/10mg
Related Screening Libraries
Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
10 mM * 1 mL in DMSO / Inquiry / In-stock
Related Libraries
Biological Activity
Description: Nothofagin has antioxidant, and antithrombotic activities, it possesses anti-inflammatory activity by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. Nothofagin may have significant benefits in the treatment of diabetic complications. Nothofagin has potential to as an anti-sendothelial cell protein C receptor shedding reagent against phorbol-12-myristate 13-acetate and cecal ligation and puncture -mediated endothelial cell protein C receptor shedding.
Targets: TNF-α | IL Receptor | ERK | p38MAPK | JNK | NF-kB | ROS
In vitro:
Fitoterapia. 2015 Jan;100:179-86.
Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibit endothelial protein C receptor shedding in vitro and in vivo.[Pubmed: 25510322]
Aspalathin (Asp) and Nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their anti-oxidant activity.
METHODS AND RESULTS:
Increasing evidence has demonstrated that beyond its role in the activation of protein C, endothelial cell protein C receptor (EPCR) is also involved in vascular inflammation. EPCR activity is markedly changed by ectodomain cleavage and its release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of Asp and Nothofagin on EPCR shedding. Our results demonstrated that Asp and Nothofagin induced potent inhibition of phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1β, and cecal ligation and puncture (CLP)-induced EPCR shedding. Asp and Nothofagin also inhibited the expression and activity of PMA-induced TACE in endothelial cells. Asp and Nothofagin also suppressed CLP-induced protein C decrease in mice and thrombin generation in HUVECs. In addition, treatment with Asp and Nothofagin resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinase (ERK) 1/2, and c-Jun N-terminal kinase (JNK).
CONCLUSIONS:
These results demonstrate the potential of Asp and Nothofagin as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding.
Inflammation. 2015 Feb;38(1):445-55.
Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo.[Pubmed: 25338943]
Vascular inflammation plays a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Aspalathin (Asp) and Nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their antioxidant activity.
METHODS AND RESULTS:
In this study, we assessed whether Asp or Nothofagin can suppress vascular inflammation induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. We monitored the effects of Asp or Nothofagin on HG-induced vascular hyperpermeability, expression of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB in vitro and in vivo.
CONCLUSIONS:
Our data indicate that HG markedly increased vascular permeability, monocyte adhesion, expression of CAMs, formation of ROS, and activation of NF-κB. Remarkably, treatment of Asp or Nothofagin inhibited HG-mediated vascular hyperpermeability, adhesion of monocytes toward HUVECs, and expression of CAMs. In addition, Asp or Nothofagin suppressed the formation of ROS and the activation of NF-κB. Since vascular inflammation induced by HG is critical in the development of diabetic complications, our results suggest that Asp or Nothofagin may have significant benefits in the treatment of diabetic complications.
Arch Pharm Res. 2014 Oct 18.
Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FIIa/FXa.[Pubmed: 25325928]
Aspalathin (Asp) and Nothofagin (Not) are two major active dihydrochalcones found in green rooibos tea (Aspalathus linearis; family, Fabaceae; tribe, Crotalarieae), which have been reported for their anti-oxidant activity.
METHODS AND RESULTS:
Here, the anticoagulant activities of Asp and Nothofagin were examined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT), and the activities of thrombin (Factor IIa, FIIa) and activated factor X (FXa). And, the effects of Asp and Nothofagin on expression of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated in tumor necrosis factor (TNF)-α activated human umbilical vein endothelial cells (HUVECs). Treatment with Asp and Nothofagin resulted in prolonged aPTT and PT and inhibition of the activities of thrombin and FXa, as well as inhibited production of thrombin and FXa in HUVECs. In addition, Asp and Nothofagin inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. Asp and Nothofagin also elicited anticoagulant effects in mice. In addition, treatment with Asp and Nothofagin resulted in significant reduction of the PAI-1 to t-PA ratio.
CONCLUSIONS:
Collectively, Asp and Nothofagin possesses antithrombotic activities and offers a basis for development of a novel anticoagulant.
Chem Biol Interact . 2019 Jan 25;298:1-7.
Nothofagin suppresses mast cell-mediated allergic inflammation[Pubmed: 30392763]
Abstract Mast cells play a major role in immunoglobulin E-mediated allergic inflammation, which is involved in asthma, atopic dermatitis, and allergic rhinitis. Nothofagin has been shown to ameliorate various inflammatory responses such as the septic response and vascular inflammation. In this study, we assessed the inhibitory effect of Nothofagin on allergic inflammation using cultured/isolated mast cells and an anaphylaxis mouse model. Nothofagin treatment prevented histamine and β-hexosaminidase release by reducing the influx of calcium into the cytosol in a concentration-dependent manner. Nothofagin also inhibited the gene expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-4 by downregulating the phosphorylation of Lyn, Syk, Akt and nuclear translocation of nuclear factor-κB. To confirm these effects of Nothofagin in vivo, we used a passive cutaneous anaphylaxis mouse model. Topical administration of Nothofagin suppressed local pigmentation and ear thickness. Taken together, these results suggest Nothofagin as a potential candidate for the treatment of mast cell-involved allergic inflammatory diseases. Keywords: Allergic inflammation; Histamine; Mast cells; Nothofagin.
In vivo:
Chem Biol Interact . 2018 Jan 5;279:227-233.
Prolonged diuretic and saluretic effect of nothofagin isolated from Leandra dasytricha (A. Gray) Cogn. leaves in normotensive and hypertensive rats: Role of antioxidant system and renal protection[Pubmed: 29198636]
Abstract Although the acute diuretic effect of Nothofagin has been recently demonstrated, its effects after dose-repeated treatment have not yet been explored. For that, male Wistar normotensive (NTR) and spontaneously hypertensive rats (SHR) were orally treated, once a day, with vehicle (VEH: distilled water; 1 ml/kg), hydrochlorothiazide (HCTZ; 10 mg/kg) or Nothofagin (NOT; 1 mg/kg). The cumulative diuretic index and urinary electrolytes excretion were measured each 24 h. On the last day of the experiment (7th day), urine, blood and kidney samples were collected for biochemical and molecular analyzes. The urinary volume of both NTR and SHR were significantly increased with the treatment with NOT (from the second to the seventh day of treatment), with final values reaching an increase of 56% and 82%, respectively, when compared with VEH-treated group. This effect was associated with increased levels of urinary excretion of Na+ and Cl-, without any changes on K+ excretion. None of the treatments modified urinary pH or density values. Importantly, neither the NOT nor the HCTZ caused any change in body weight following the dose-repeated treatment, and also did not provoke an electrolytic disturbance. Regarding the renal analyzes, when compared with the vehicle-treated NTR group, the activity of superoxide dismutase (SOD) and the reduced glutathione (GSH) levels in kidney homogenates of the SHR group were decreased, while the generation of lipid hydroperoxides were significantly increased. The daily treatment with NOT was able to restore the GSH levels and SOD activity, as well as reduced the lipoperoxidation in the kidney homogenates obtained from SHR animals. Finally, NOT significantly augmented the levels of nitrite, a marker of nitric oxide production, in the plasma obtained from SHR group when compared with the vehicle-treated only NTR. This study revealed the prolonged diuretic and saluretic effect of Nothofagin in normotensive and hypertensive rats. Our data also showed the renal protective effects of Nothofagin by the improvement of antioxidative capacity, as well as by the augmented bioavailability of plasma nitric oxide in the hypertensive group. Keywords: Antioxidant; Diuresis; Glutathione; Lipoperoxidation; Nitric oxide; Superoxide dismutase.
Nothofagin Description
Source: The heartwoods of Nothofagus fusca
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
ChemFaces New Products and Compounds
Gancaonin N

Catalog No: CFN95066
CAS No: 129145-52-4
Price: $463/5mg
Selina-4(15),7(11)-dien-8-one

Catalog No: CFN95078
CAS No: 54707-47-0
Price: $288/10mg
6''-O-acetylsaikosaponin A

Catalog No: CFN95086
CAS No: 64340-46-1
Price: $268/10mg
Lonicerin

Catalog No: CFN95055
CAS No: 25694-72-8
Price: $168/10mg
Tangshenoside I

Catalog No: CFN95108
CAS No: 117278-74-7
Price: $338/10mg
New compound 7

Catalog No: CFN95330
CAS No: N/A
Price: $368/5mg
6'-Feruloylnodakenin

Catalog No: CFN95202
CAS No: 131623-14-8
Price: $318/10mg
Columbianetin beta-D-glucopyranosi...

Catalog No: CFN95038
CAS No: 55836-35-6
Price: $288/5mg
Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

Cell. 2018 Jan 11;172(1-2):249-261.e12.
doi: 10.1016/j.cell.2017.12.019.
IF=36.216(2019)

PMID: 29328914

Cell Metab. 2020 Mar 3;31(3):534-548.e5.
doi: 10.1016/j.cmet.2020.01.002.
IF=22.415(2019)

PMID: 32004475

Mol Cell. 2017 Nov 16;68(4):673-685.e6.
doi: 10.1016/j.molcel.2017.10.022.
IF=14.548(2019)

PMID: 29149595

ACS Nano. 2018 Apr 24;12(4): 3385-3396.
doi: 10.1021/acsnano.7b08969.
IF=13.903(2019)

PMID: 29553709

Nature Plants. 2016 Dec 22;3: 16206.
doi: 10.1038/nplants.2016.205.
IF=13.297(2019)

PMID: 28005066

Sci Adv. 2018 Oct 24;4(10): eaat6994.
doi: 10.1126/sciadv.aat6994.
IF=12.804(2019)

PMID: 30417089
Calculate Dilution Ratios(Only for Reference)
1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.2915 mL 11.4574 mL 22.9148 mL 45.8295 mL 57.2869 mL
5 mM 0.4583 mL 2.2915 mL 4.583 mL 9.1659 mL 11.4574 mL
10 mM 0.2291 mL 1.1457 mL 2.2915 mL 4.583 mL 5.7287 mL
50 mM 0.0458 mL 0.2291 mL 0.4583 mL 0.9166 mL 1.1457 mL
100 mM 0.0229 mL 0.1146 mL 0.2291 mL 0.4583 mL 0.5729 mL
* Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
Protocol
Kinase Assay:
Inflammation. 2015 Feb 6.
Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo.[Pubmed: 25655391]
Aspalathin (Asp) and Nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their anti-oxidant activity.
METHODS AND RESULTS:
Here, we investigated the anti-inflammatory effects and underlying mechanisms of Asp and Nothofagin against lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of Asp and Nothofagin were determined by measuring permeability, monocytes adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and mice. We found that each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of neutrophils to human endothelial cells. Asp and Nothofagin also suppressed LPS-induced hyperpermeability and leukocyte migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α (TNF-α) or interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with each compound resulted in reduced LPS-induced lethal endotoxemia.
CONCLUSIONS:
These results suggest that Asp and Nothofagin posses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Soyasaponin Ac

Catalog No: CFN90774
CAS No: 133882-74-3
Price: $ / mg
Polyporenic acid C

Catalog No: CFN92739
CAS No: 465-18-9
Price: $268/10mg
Afzelin

Catalog No: CFN98757
CAS No: 482-39-3
Price: $288/20mg
Rosavin

Catalog No: CFN99179
CAS No: 84954-92-7
Price: $68/20mg
Chebulanin

Catalog No: CFN92294
CAS No: 166833-80-3
Price: $ / mg
Aconitine

Catalog No: CFN99915
CAS No: 302-27-2
Price: $80/20mg
Hyperoside

Catalog No: CFN98754
CAS No: 482-36-0
Price: $50/20mg
Isorhamnetin

Catalog No: CFN98735
CAS No: 480-19-3
Price: $60/20mg
Beta-mangostin

Catalog No: CFN99723
CAS No: 20931-37-7
Price: $218/10mg
Cyanidin-3-O-arabinoside chloride

Catalog No: CFN92041
CAS No: 111613-04-8
Price: $318/10mg
Tags: buy Nothofagin | Nothofagin supplier | purchase Nothofagin | Nothofagin cost | Nothofagin manufacturer | order Nothofagin | Nothofagin distributor