Info: Read More
  • ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  •   
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Science | Nature | Cell | View More
    Natural Products
    Taraxerol
    Information
    CAS No. 127-22-0 Price $398 / 20mg
    Catalog No.CFN99381Purity>=98%
    Molecular Weight426.7 Type of CompoundTriterpenoids
    FormulaC30H50OPhysical DescriptionPowder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)  (SDF)
    Citing Use of our Products
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
    Size /Price /Stock 10 mM * 1 mL in DMSO / $168.2 / In-stock
    Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
    Our products had been exported to the following research institutions and universities, And still growing.
  • University of Canterbury (New Zealand)
  • University of Limpopo (South Africa)
  • Istanbul University (Turkey)
  • Universidad de Ciencias y Artes... (Mexico)
  • Cancer Research Initatives Foun... (Malaysia)
  • University of Dicle (Turkey)
  • Chiang Mai University (Thailand)
  • University of Perugia (Italy)
  • Ain Shams University (Egypt)
  • VIT University (India)
  • The Ohio State University (USA)
  • More...
  • Package
    Featured Products
    Kushenol C

    Catalog No: CFN92391
    CAS No: 99119-73-0
    Price: $468/10mg
    Pyrocurzerenone

    Catalog No: CFN96169
    CAS No: 20013-75-6
    Price: $388/20mg
    3-O-Feruloylquinic acid

    Catalog No: CFN92393
    CAS No: 1899-29-2
    Price: $488/5mg
    Isoacteoside

    Catalog No: CFN97049
    CAS No: 61303-13-7
    Price: $178/20mg
    3-O-Caffeoylquinic acid methyl ester

    Catalog No: CFN92573
    CAS No: 123483-19-2
    Price: $198/10mg
    Saprorthoquinone

    Catalog No: CFN92169
    CAS No: 102607-41-0
    Price: $498/5mg
    Przewaquinone A

    Catalog No: CFN92022
    CAS No: 76843-23-7
    Price: $338/5mg
    Related Screening Libraries
    Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
    10 mM * 1 mL in DMSO / Inquiry / In-stock
    Related Libraries
  • Anticancer Compound Library
  • Anti-inflammatory Compound Library
  • Triterpenoids Compound Library
  • TNF-α Inhibitor Library
  • TGF-β/Smad Inhibitor Library
  • PGE Inhibitor Library
  • NO Inhibitor Library
  • NF-kB Inhibitor Library
  • IL Receptor Inhibitor Library
  • Akt Inhibitor Library
  • Biological Activity
    Description: Taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. Taraxerol has potent anti-inflammatory effects,it downregulates the expression of proinflammatory mediators in macrophages by interfering with the activation of TAK1 and Akt, thus preventing NF-κB activation. Taraxerol also has anti-cancer activity, it shows inhibitory effects on AGS cell growth through inducing G2/M arrest and promotion of cell apoptosis, taraxeryl acetate has less effect on cell cycle arrest and apoptosis of AGS cells than taraxerol.
    Targets: NO | PGE | TNF-α | IL Receptor | NF-kB | TGF-β/Smad | Akt
    In vitro:
    Appl Biochem Biotechnol. 2012 Oct;168(3):487-503.
    Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).[Pubmed: 22843061]
    Independent transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) were established using explant co-cultivation with Agrobacterium rhizogenes.
    METHODS AND RESULTS:
    Rhizoclones capable of sustained growth were maintained under low illumination in auxin-free agar-solidified MS medium through subcultures at periodic intervals. Integration of T(L)-DNA rolB gene in the transformed rhizoclone genome was verified by Southern blot hybridization, and the transcript expression of T(R)-DNA ags and man2 genes was ascertained by reverse transcription polymerase chain reaction analysis. The major compound isolated and purified from the transformed root extracts was identified as the pentacyclic triterpenoid compound Taraxerol using IR, (1)H-NMR, and (13)C-NMR spectroscopy. The Taraxerol yield in cultured hairy roots, as quantified by HPTLC analysis, was up to 4-fold on dry weight basis compared to that in natural roots. Scanning of bands from cultured transformed roots and natural roots gave super-imposable spectra with standard Taraxerol, suggesting a remarkable homology in composition.
    CONCLUSIONS:
    To date, this is the first report claiming production of the cancer therapeutic phytochemical Taraxerol in genetically transformed root cultures as a viable alternative to in vivo roots of naturally occurring plant species.
    Geochim. Cosmochim. Ac., 2004, 68(3): 411-22.
    Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems 1 1 Associate editor: R. Summons[Reference: WebLink]

    METHODS AND RESULTS:
    Angola Basin and Cape Basin (southeast Atlantic) surface sediments and sediment cores show that maxima in the abundance of Taraxerol (relative to other land-derived lipids) covary with maxima in the relative abundance of pollen from the mangrove tree genus Rhizophora and that in the surface sediments offshore maxima in the relative abundance of Taraxerol occur at latitudes with abundant coastal mangrove forests. Together with the observation that Rhizophora mangle and Rhizophora racemosa leaves are extraordinarily rich in Taraxerol, this strongly indicates that Taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. The proxy-environment relations for Taraxerol and Rhizophora pollen down-core show that increased Taraxerol and Rhizophora pollen abundances occur during transgressions and periods with a humid climate. These environmental changes modify the coastal erosion and sedimentation patterns, enhancing the extent of the mangrove ecosystem and/or the transport of mangrove organic matter offshore.
    CONCLUSIONS:
    Analyses of mid-Pleistocene sediments show that interruption of the pattern of Taraxerol maxima during precession minima occurs almost only during periods of low obliquity. This demonstrates the complex environmental response of the interaction between precession-related humidity cycles and obliquity-related sea-level changes on mangrove input.
    Taraxerol Description
    Source: The herbs of Taraxacum mongolicum Hand. Mazz.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Coelonin

    Catalog No: CFN92693
    CAS No: 82344-82-9
    Price: $388/5mg
    Ganoderic acid C6

    Catalog No: CFN92290
    CAS No: 105742-76-5
    Price: $368/10mg
    4,7-Didehydroneophysalin B

    Catalog No: CFN95317
    CAS No: 134461-76-0
    Price: $338/5mg
    Bruceine E

    Catalog No: CFN89340
    CAS No: 21586-90-3
    Price: $318/20mg
    Isoedultin

    Catalog No: CFN95273
    CAS No: 43043-08-9
    Price: $318/5mg
    Leachianol F

    Catalog No: CFN95147
    CAS No: 164123-50-6
    Price: $318/5mg
    Arjunolic acid

    Catalog No: CFN98690
    CAS No: 465-00-9
    Price: $338/5mg
    Silybin A

    Catalog No: CFN95149
    CAS No: 22888-70-6
    Price: $318/10mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.3436 mL 11.7178 mL 23.4357 mL 46.8713 mL 58.5892 mL
    5 mM 0.4687 mL 2.3436 mL 4.6871 mL 9.3743 mL 11.7178 mL
    10 mM 0.2344 mL 1.1718 mL 2.3436 mL 4.6871 mL 5.8589 mL
    50 mM 0.0469 mL 0.2344 mL 0.4687 mL 0.9374 mL 1.1718 mL
    100 mM 0.0234 mL 0.1172 mL 0.2344 mL 0.4687 mL 0.5859 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Protocol
    Kinase Assay:
    Int Immunopharmacol. 2013 Feb;15(2):316-24.
    Taraxerol inhibits LPS-induced inflammatory responses through suppression of TAK1 and Akt activation.[Pubmed: 23333629]
    Taraxerol, a triterpenoid compound, has potent anti-inflammatory effects. However, the molecular mechanisms are not clear.
    METHODS AND RESULTS:
    In the study, Taraxerol concentration dependently inhibited nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels and these inhibitions decreased the production of nitric oxide (NO), prostaglandin 2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β induced by LPS. Furthermore, we found that Taraxerol suppressed translocation of nuclear factor-κB (NF-κB), phosphorylation of IκBα, blocked the IκBα degradation as well as IKK and mitogen-activated protein kinase (MAPK) activation by inactivation of TGF-β-activated kinase-1 (TAK1) and Akt. In addition, Taraxerol significantly inhibited the formation of TAK1/TAK-binding protein1 (TAB1), which was accompanied by inducing degradation of TAK1, decreasing LPS-induced polyubiquitination of TAK1 as well as TAK1 phosphorylation.
    CONCLUSIONS:
    Taken together, our data suggest that Taraxerol downregulates the expression of proinflammatory mediators in macrophages by interfering with the activation of TAK1 and Akt, thus preventing NF-κB activation.
    Cell Research:
    Zhong Xi Yi Jie He Xue Bao. 2011 Jun;9(6):638-42.
    [Effects of taraxerol and taraxerol acetate on cell cycle and apoptosis of human gastric epithelial cell line AGS].[Pubmed: 21669168]
    To investigate the effects of Taraxerol and Taraxerol acetate on cell cycle and apoptosis of human gastric epithelial cell line AGS cells.
    METHODS AND RESULTS:
    The inhibitory effects of Taraxerol and Taraxerol acetate at different concentrations on AGS cell growth were measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method and the concentrations of Taraxerol and Taraxerol acetate to be used in following experiments were decided. Then, cell cycle analysis was performed by FACScan flow cytometry after culture with Taraxerol or Taraxerol acetate. Annexin V-fluorescein isothiocyanate/propidium iodide staining was used to measure cell apoptosis. Taraxerol significantly inhibited AGS cell proliferation in a dose- and time-dependent manner. Taraxerol arrested the AGS cells at G(2)/M stage. 110 μmol/L Taraxerol elevated the population of AGS cells arrested in G(2)/M phase compared with solvent (P<0.05). Taraxerol also promoted early cell apoptosis in AGS cells. 110 μmol/L Taraxerol increased the early cell apoptosis rate from 4.45% to 10.29%, which was 1.31 times higher than that of the untreated cells. However, Taraxerol acetate had a lower inhibitory effect than Taraxerol, and it showed a tendency of G(2)/M arrest and apoptosis promotion but with no statistical significance (P>0.05).
    CONCLUSIONS:
    Taraxerol has inhibitory effects on AGS cell growth through inducing G(2)/M arrest and promotion of cell apoptosis. Taraxerol acetate has less effect on cell cycle arrest and apoptosis of AGS cells than Taraxerol.
    Structure Identification:
    Nat Prod Commun. 2013 Oct;8(10):1371-2.
    A new taraxerol derivative from the roots of Microcos tomentosa.[Pubmed: 24354177]

    METHODS AND RESULTS:
    A new 3beta-O-vanilloyl-Taraxerol, microcisin (1) and eight known compounds, 3beta-Taraxerol acetate (2), 3beta-Taraxerol (3), cholest-4-en-3-one (4), cholest-4-en-6beta-ol-3-one (5), beta-sitosterol (6), 7-hydroxycadalene (7), mellein (8) and vanillin (9), were isolated from the roots of Microcos tomentosa. The structures were determined by extensive analysis of their spectroscopic data. All isolated compounds were evaluated for their cytotoxicity against KB and HeLa cells.