• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Baicalin
    Information
    CAS No. 21967-41-9 Price $40 / 20mg
    Catalog No.CFN99111Purity>=98%
    Molecular Weight446.37Type of CompoundFlavonoids
    FormulaC21H18O11Physical DescriptionYellow powder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Universidade da Beira Interior (Germany)
  • National Research Council of Can... (Canada)
  • Shanghai Institute of Biochemist... (China)
  • Chiang Mai University (Thailand)
  • University of Beira Interior (Portugal)
  • Celltrion Chemical Research Inst... (Korea)
  • Kazusa DNA Research Institute (Japan)
  • University of Minnesota (USA)
  • Harvard University (USA)
  • Michigan State University (USA)
  • University of Brasilia (Brazil)
  • More...
  • Package
    Featured Products
    Deapi-platycoside E

    Catalog No: CFN92355
    CAS No: 849758-42-5
    Price: $498/10mg
    Lanosterol

    Catalog No: CFN92368
    CAS No: 79-63-0
    Price: $388/5mg
    Echinacoside

    Catalog No: CFN98105
    CAS No: 82854-37-3
    Price: $60/20mg
    Picroside III

    Catalog No: CFN99567
    CAS No: 64461-95-6
    Price: $228/20mg
    Mulberroside A

    Catalog No: CFN99586
    CAS No: 102841-42-9
    Price: $100/20mg
    Biological Activity
    Description: Baicalin has antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotection actions, it is a known prolyl endopeptidase inhibitor, affects the GABA receptors, and reduces the expression of NF-κB. Baicalin may have significant therapeutic benefits against diabetic complications and atherosclerosis.
    Targets: Caspase | NF-kB | TNF-α | IL Receptor | ROS
    In vitro:
    Mol Immunol. 2002 Feb;38(10):781-91.
    Baicalin induces apoptosis via mitochondrial pathway as prooxidant.[Pubmed: 11841838]
    Baicalin is a flavonoid and a major component of a herbal medicine, Sho-saiko-to, which is commonly used for treatment of chronic hepatitis in Japan and China. Flavonoids including Baicalin have been reported to not only function as anti-oxidants but also cause cytotoxic effect.
    METHODS AND RESULTS:
    We investigated the mechanism of Baicalin-induced cytotoxicity in leukemia-derived T cell line, Jurkat cells. When cells were cultured with 50-200 microg/ml Baicalin for 6h, caspase-3 was activated and then cells fell into apoptosis. Induction of apoptosis by Baicalin was accompanied with the marginal generation of intracellular reactive oxygen species (ROS), the increase of the cytosolic fractions of cytochrome c, and the disruption of mitochondrial transmembrane potential (DeltaPsi(m)) prior to the activation of caspase-3. The pre-culture with 5 mM of buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, facilitated Baicalin-induced disruption of DeltaPsi(m) and induction of apoptosis. The pre-culture with N-benzyloxycarbonyl-valyl-alanyl-aspartyl fluoromethylketone (Z-VAD-fmk), a pan-caspase inhibitor, partially suppressed the induction of apoptosis. On the other hand, Baicalin showed little toxic effect on peripheral blood mononuclear cells (PBMCs) from healthy volunteers.
    CONCLUSIONS:
    These results indicate that Baicalin acts as a prooxidant and induces caspase-3 activation and apoptosis via mitochondrial pathway.
    In vivo:
    BMB Rep. 2015 Mar 5. pii: 3111.
    Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo.[Pubmed: 25739393]
    Vascular inflammatory process has been suggested to play a key role in initiation and progression of atherosclerosis, a major complication of diabetes mellitus.
    METHODS AND RESULTS:
    Thus, in this study, we attempted to determine whether three structurally related polyphenols found in the Chinese herb Huang Qui, namely Baicalin, baicalein, and wogonin, can suppress vascular inflammatory processes induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. Data showed that HG induced markedly increased vascular permeability, monocyte adhesion, expressions of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS) and activation of nuclear factor (NF)-κB. Remarkably, all of the above mentioned vascular inflammatory effects of HG were attenuated by pretreatment with Baicalin, baicalein, and wogonin.
    CONCLUSIONS:
    Vascular inflammatory responses induced by HG are critical events underlying development of various diabetic complications, therefore, our results suggest that Baicalin, baicalein, and wogonin may have significant therapeutic benefits against diabetic complications and atherosclerosis.
    Brain Res Bull. 2011 Jul 15;85(6):396-402.
    Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways.[Pubmed: 21600966 ]
    Baicalin is an important medicinal herb purified from the dry roots of Scutellaria baicalensis Georgi.
    METHODS AND RESULTS:
    The present study was undertaken to evaluate the neuroprotective effects of Baicalin in gerbils subjected to transient global cerebral ischemic-reperfusion injury. Baicalin at doses of 50, 100 and 200mg/kg was intraperitoneally injected into the gerbils immediately after cerebral ischemia. Seven days after reperfusion, hematoxylin and eosin (HE) staining was performed to analyze hippocampal CA1 pyramidal damage histopathologically. In addition, in order to understand the potential protective mechanism of Baicalin, we examined anti-oxidative enzymes, such superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), non-enzymatic scavenger glutathione (GSH) and measured the content of malondialdehyde (MDA) in hippocampus. The mRNA and protein expressions of BDNF were determined in ischemic hippocampus by real-time RT-PCR and Western blot, respectively. Evidence for neuronal apoptosis was detected by real-time RT-PCR, Western blot and caspase-3 activity measurement. Histopathological examination showed that the administration of Baicalin by the dose of 100 and 200mg/kg significantly attenuated ischemia-induced neuronal cell damage. Reduced level of MDA, obviously elevated activities of SOD and GSH as well as GSH-PX were also found in Baicalin-treated groups. Further investigation demonstrated that treatment with Baicalin remarkably promoted the expression of BDNF and inhibited the expression of caspase-3 at mRNA and protein levels by real-time RT-PCR and Western blot, respectively. Besides, caspase-3 activity assay also elucidated that the administration of Baicalin could significantly suppress caspase-3 in ischemic gerbils hippocampus.
    CONCLUSIONS:
    Theses findings suggest that Baicalin's neuroprotection appears to be associated with its anti-oxidative and anti-apoptotic properties in global cerebral ischemia in the gerbils.
    Baicalin Description
    Source: The roots of Scutellaria baicalensis Georgi.
    Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Glucoliquiritin

    Catalog No: CFN95011
    CAS No: 93446-18-5
    Price: $318/10mg
    Bruceine E

    Catalog No: CFN89340
    CAS No: 21586-90-3
    Price: $318/5mg
    Oroxylin A

    Catalog No: CFN98540
    CAS No: 480-11-5
    Price: $138/20mg
    Scopolin

    Catalog No: CFN98887
    CAS No: 531-44-2
    Price: $168/20mg
    Epimedin K

    Catalog No: CFN95019
    CAS No: 174286-13-6
    Price: $288/5mg
    Fargesin

    Catalog No: CFN98174
    CAS No: 31008-19-2
    Price: $128/20mg
    Ginsenoside F5

    Catalog No: CFN95034
    CAS No: 189513-26-6
    Price: $298/20mg
    Bruceine D

    Catalog No: CFN90771
    CAS No: 21499-66-1
    Price: $318/10mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.2403 mL 11.2015 mL 22.4029 mL 44.8059 mL 56.0073 mL
    5 mM 0.4481 mL 2.2403 mL 4.4806 mL 8.9612 mL 11.2015 mL
    10 mM 0.224 mL 1.1201 mL 2.2403 mL 4.4806 mL 5.6007 mL
    50 mM 0.0448 mL 0.224 mL 0.4481 mL 0.8961 mL 1.1201 mL
    100 mM 0.0224 mL 0.112 mL 0.224 mL 0.4481 mL 0.5601 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Protocol
    Cell Research:
    Inflammation. 2015 Jan 30.
    Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-κB Pathway in HBE16 Airway Epithelial Cells.[Pubmed: 25630720]
    Baicalin, a flavonoid monomer derived from Scutellaria baicalensis called Huangqin in mandarin, is the main active ingredient contributing to S. baicalensis' efficacy. It is known in China that Baicalin has potential therapeutic effects on inflammatory diseases. However, its anti-inflammatory mechanism has still not been fully interpreted.
    METHODS AND RESULTS:
    We aim to investigate the anti-inflammatory effect of Baicalin on lipopolysaccharide (LPS)-induced inflammation in HBE16 airway epithelial cells and also to explore the underlying signaling mechanisms. The anti-inflammatory action of Baicalin was evaluated in human airway epithelial cells HBE16 treated with LPS. Airway epithelial cells HBE16 were pretreated with a range of concentrations of Baicalin for 30 min and then stimulated with 10 μg/ml LPS. The secretions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in cell culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of IL-6, IL-8, and TNF-α were tested by quantitative real-time polymerase chain reaction (real-time RT-PCR). Furthermore, Western blotting was used to determine whether the signaling pathway NF-κB was involved in the anti-inflammatory action of Baicalin. The inflammatory cell model was successfully built with 10 μg/ml LPS for 24 h in our in vitro experiments. Both the secretions and the mRNA expressions of IL-6, IL-8, and TNF-α were significantly inhibited by Baicalin. Moreover, the expression levels of phospho-IKKα/β and phospho-NF-κB p65 were downregulated, and the phospho-IκB-α level was upregulated by Baicalin.
    CONCLUSIONS:
    These findings suggest that the anti-inflammatory properties of Baicalin may be resulted from the inhibition of IL-6, IL-8, and TNF-α expression via preventing signaling NF-κB pathway in HBE16 airway epithelial cells. In addition, this study provides evidence to understand the therapeutic effects of Baicalin on inflammatory diseases in clinical practice.