• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Demethylzeylasteral
    Information
    CAS No. 107316-88-1 Price $40 / 20mg
    Catalog No.CFN90136Purity>=98%
    Molecular Weight480.60Type of CompoundTriterpenoids
    FormulaC29H36O6Physical DescriptionPowder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Pennsylvania State University (USA)
  • Universiti Sains Malaysia (Malaysia)
  • Almansora University (Egypt)
  • National Chung Hsing University (Taiwan)
  • Mahidol University (Thailand)
  • Research Unit Molecular Epigenet... (Germany)
  • Chang Gung University (Taiwan)
  • Chinese University of Hong Kong (China)
  • University of Vienna (Austria)
  • Osmania University (India)
  • University of Madras (India)
  • More...
  • Package
    Featured Products
    Isoliquiritin apioside

    Catalog No: CFN90800
    CAS No: 120926-46-7
    Price: $288/10mg
    Kushenol C

    Catalog No: CFN92391
    CAS No: 99119-73-0
    Price: $468/10mg
    Curzerenone

    Catalog No: CFN92027
    CAS No: 20493-56-5
    Price: $258/10mg
    11-Keto-beta-boswellic acid

    Catalog No: CFN90152
    CAS No: 17019-92-0
    Price: $168/5mg
    Tangeretin

    Catalog No: CFN90240
    CAS No: 481-53-8
    Price: $40/20mg
    Biological Activity
    Description: Demethylzeylasteral exhibits strong inhibition towards UDP-glucuronosyltransferase (UGT) 1A6 and 2B7, and the inhibition kinetic parameters (Ki) are calculated to be 0.6 uM and 17.3 uM for UGT1A6 and UGT2B7, respectively. Demethylzeylasteral has antimicrobial, strong immunosuppressive, and antifertility activities; it concentration-dependently and in a partially reversible manner can inhibit the Ca(2+) current in spermatogenic cells with an IC(50) of 8.8 microg/ml, and it also can inhibit significantly the sperm acrosome reaction initiated by progesterone.
    Targets: Antifection | Immunology & Inflammation related | UGT1A6 | UGT2B7 | Calcium Channel
    In vitro:
    Eur J Drug Metab Pharmacokinet. 2014 Jun;39(2):99-102.
    Demethylzeylasteral exhibits dose-dependent inhibitory behaviour towards estradiol glucuronidation.[Pubmed: 23807732]
    The disturbance of estradiol level might induce the occurence of some diseases, including cancer. Estradiol is mainly metabolized through the conjugation reactions, including the sulfation and glucuronidation reactions. The present study tried to evaluate the inhibition of estradiol glucuronidation by the major ingredients of Tripterygium wilfordii Hook F. Demethylzeylasteral.
    METHODS AND RESULTS:
    Selective ion monitoring at negative ion mode ([M⁺ H⁻] = 447) was employed to monitor the two glucuronides of estradiol. The reaction rate was determined through comparison of peak area of these two glucuronides. Lineweaver-Burk plot and Dixon plot were utilized to determine the inhibition kinetic type, and the inhibition kinetic parameters (K i) were calculated using the second plot. Competitive inhibition of Demethylzeylasteral towards the formation of two glucuronides of estradiol was demonstrated, and the K i values were calculated to be 453.3 and 110.9 μM, respectively.
    CONCLUSIONS:
    All these results will remind us the risk of elevated serum concentrations of estradiol due to the inhibition of estradiol glucuronidation by Demethylzeylasteral.
    Eur J Pharmacol. 2003 Mar 7;464(1):9-15.
    Effects of demethylzeylasteral and celastrol on spermatogenic cell Ca2+ channels and progesterone-induced sperm acrosome reaction.[Pubmed: 12600689]
    The male antifertility effect of a water-chloroform extract of Tripterygium wilfordii Hook. f. (GTW) and several monomers isolated from GTW has attracted worldwide interest.
    METHODS AND RESULTS:
    In the present study, the effects of two isolated monomers from GTW, Demethylzeylasteral and celastrol, on the Ca(2+) channels in mouse spermatogenic cells and on the sperm acrosome reaction were investigated by whole-cell patch-clamp recording and chlortetracycline staining methods, respectively. The results showed that Demethylzeylasteral concentration-dependently and in a partially reversible manner inhibited the Ca(2+) current in spermatogenic cells with an IC(50) of 8.8 microg/ml. Celastrol decreased the Ca(2+) current in the cells time-dependently and irreversibly. The changes in the activation and inactivation time constants of Ca(2+) currents after application of these two compounds were also examined. Demethylzeylasteral increased both activation and inactivation time constants of Ca(2+) currents, and celastrol had no significant effect on them. The two compounds also inhibited significantly the sperm acrosome reaction initiated by progesterone.
    CONCLUSIONS:
    These data suggest that inhibition of Ca(2+) currents could be responsible for the antifertility activity of these compounds.
    Planta Med. 2005 Apr;71(4):313-9.
    Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis.[Pubmed: 15856406 ]
    Zeylasteral and Demethylzeylasteral are 6-oxophenolic triterpenoids isolated from the root of Maytenus blepharodes, which have antimicrobial activity against Gram-positive bacteria and the yeast Candida albicans.
    METHODS AND RESULTS:
    The time-kill curves for zeylasteral and Demethylzeylasteral at concentrations twice their MICs, against Bacillus subtilis showed that the colony forming units were reduced in 3-log10 and > 4-log10 respectively. This reduction was dependent on inoculum size and the growth phase of cells, and was greater when the compounds were incorporated in the exponential phase, indicating a bacteriolytic effect. Treatment with both agents, particularly with zeylasteral (20 microg/mL) caused a reduction of optical density at 550 nm. With regard to the synthesis of DNA, RNA, protein and cell wall, the compounds exhibited the fastest inhibition against cell wall synthesis.
    CONCLUSIONS:
    Thus, the predisposition to lysis, the morphological changes seen by microscopy, and the complete inhibition in the incorporation the N-acetyl-d-[1 - 14C]glucosamine, suggest that the phenolic compounds compromise the cell wall synthesis and/or cytoplasmic membrane.
    Demethylzeylasteral Description
    Source: The herbs of Tripterygium wilfordii Hook.f.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    meso-Hannokinol

    Catalog No: CFN90864
    CAS No: N/A
    Price: $368/5mg
    Tangshenoside I

    Catalog No: CFN95108
    CAS No: 117278-74-7
    Price: $218/5mg
    Piplartine

    Catalog No: CFN96137
    CAS No: 20069-09-4
    Price: $338/10mg
    Betmidin

    Catalog No: CFN95047
    CAS No: 35589-22-1
    Price: $413/5mg
    1,3,6-Tri-O-galloylglucose

    Catalog No: CFN95043
    CAS No: 18483-17-5
    Price: $338/10mg
    Polygalasaponin XLIX

    Catalog No: CFN95117
    CAS No: 1033593-12-2
    Price: $318/10mg
    Angelol M

    Catalog No: CFN95060
    CAS No: 1092952-64-1
    Price: $288/5mg
    Licoricone

    Catalog No: CFN96504
    CAS No: 51847-92-8
    Price: $333/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.0807 mL 10.4037 mL 20.8073 mL 41.6146 mL 52.0183 mL
    5 mM 0.4161 mL 2.0807 mL 4.1615 mL 8.3229 mL 10.4037 mL
    10 mM 0.2081 mL 1.0404 mL 2.0807 mL 4.1615 mL 5.2018 mL
    50 mM 0.0416 mL 0.2081 mL 0.4161 mL 0.8323 mL 1.0404 mL
    100 mM 0.0208 mL 0.104 mL 0.2081 mL 0.4161 mL 0.5202 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Protocol
    Kinase Assay:
    Molecules. 2012 Aug 8;17(8):9469-75.
    Demethylzeylasteral exhibits strong inhibition towards UDP-glucuronosyltransferase (UGT) 1A6 and 2B7.[Pubmed: 22874791]
    Inhibition of UDP-glucuronosyltransferase (UGT) isoforms can result in severe clinical results, including clinical drug-drug interactions (DDI) and metabolic disorders of endogenous substances. The present study aims to investigate the inhibition of Demethylzeylasteral (an important active component isolated from Tripterygium wilfordii Hook F.) towards three important UGT isoforms UGT1A6, UGT1A9 and UGT2B7.
    METHODS AND RESULTS:
    The results showed that 100 μM of Demethylzeylasteral exhibited strong inhibition towards UGT1A6 and UGT2B7, with negligible influence towards UGT1A9. Furthermore, Dixon and Lineweaver-Burk plots showed the inhibition of UGT1A6 and UGT2B7 by Demethylzeylasteral was best fit to competitive inhibition, and the inhibition kinetic parameters (Ki) were calculated to be 0.6 μM and 17.3 μM for UGT1A6 and UGT2B7, respectively. This kind of inhibitory effect need much attention when Demethylzeylasteral and demethylzeyasteral-containing herbs (e.g., Tripterygium wilfordii Hook F.) were co-administered with the drugs mainly undergoing UGT1A6, UGT2B7-catalyzed metabolism.
    CONCLUSIONS:
    However, when extrapolating the in vivo clinical results using our present in vitro data, many complex factors might affect final results, including the contribution of UGT1A6 and UGT2B7 to the metabolism of compounds, and the herbal or patients' factors affecting the in vivo concentration of Demethylzeylasteral.
    Animal Research:
    Int Immunopharmacol. 2009 Jul;9(7-8):996-1001.
    Immunosuppressive effects of demethylzeylasteral in a rat kidney transplantation model.[Pubmed: 19383554]
    In this study, we examined the immunosuppressive activity of Demethylzeylasteral (T-96), isolated from the traditional Chinese herbal medicine, Tripterygium wilfordii Hook f. Its immunosuppressive effect was investigated using mouse splenocytes in vitro, and in an in vivo rat kidney transplant model.
    METHODS AND RESULTS:
    T-96 inhibited mouse splenocyte proliferation in a dose dependent manner. In the rat kidney transplant study, rats were randomly divided into eight groups following kidney transplantation, and different doses of T-96 or cyclosporin A (CsA) were administered to each group. T-96 alone at doses of 10 or 20 mg/kg/day significantly prolonged the survival of kidney-transplanted rats, compared with transplanted but untreated control rats. A combination of T-96 and prednisone also significantly prolonged survival: 10 mg/kg/day T-96 with 10 mg/kg/day prednisone increased the survival time to 31.8+/-6.5 days. Moreover, the combination of T-96 and prednisone was also effective in suppressing rejection of rat transplanted kidneys.
    CONCLUSIONS:
    These results demonstrate the strong immunosuppressive activity of T-96 and suggest a possible clinical use for T-96 as an immunosuppressive agent in the fields of organ transplantation and autoimmune disorders.