• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    CAS No. 55481-88-4 Price $100 / 20mg
    Catalog No.CFN98930Purity>=98%
    Molecular Weight284.3 Type of CompoundQuinones
    FormulaC17H16O4Physical DescriptionPowder
    Download     COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Celltrion Chemical Research Inst... (Korea)
  • Univerzita Karlova v Praze (Czech Republic)
  • Wageningen University (Netherlands)
  • Warszawski Uniwersytet Medyczny (Poland)
  • Deutsches Krebsforschungszentrum (Germany)
  • Universidade do Porto (Portugal)
  • Mendel University in Brno (Czech Republic)
  • Wroclaw Medical University (Poland)
  • Universidad Veracuzana (Mexico)
  • Auburn University (USA)
  • Heidelberg University (Germany)
  • More...
  • Package
    Featured Products
    Deapi-platycodin D3

    Catalog No: CFN92269
    CAS No: 67884-05-3
    Price: $388/5mg

    Catalog No: CFN96169
    CAS No: 20013-75-6
    Price: $388/20mg
    Ganoderic acid S

    Catalog No: CFN99066
    CAS No: 104759-35-5
    Price: $568/5mg
    Ganoderenic acid D

    Catalog No: CFN90300
    CAS No: 100665-43-8
    Price: $476/10mg
    Ganoderiol F

    Catalog No: CFN99244
    CAS No: 114567-47-4
    Price: $398/5mg
    Biological Activity
    Description: Mollugin is a JAK2 inhibitor and inhibits LPS-induced inflammatory responses by blocking the activation of the JAK-STAT pathway. Mollugin may be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis. Mollugin has anticancer efficacy, can modulate the HER2, HO-1, Nrf2 , and NF- κB pathways.
    Targets: JAK | STAT | HO-1 | Nrf2 | NF-kB | PI3K | p38MAPK | mTOR | Akt | ERK | Autophagy | GSK-3 | MEK | NO | NOS | IL Receptor | TNF-α | IkB | JNK | Bcl-2/Bax | MMP(e.g.TIMP) | VEGFR | EGFR | IKK
    In vitro:
    Biochem Biophys Res Commun. 2014 Jul 18;450(1):247-54.
    Mollugin induces tumor cell apoptosis and autophagy via the PI3K/AKT/mTOR/p70S6K and ERK signaling pathways.[Pubmed: 24887566]
    Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anticancer efficacy in various cancer models. However the effects of Mollugin in regulating cancer cell survival and death remains undefined.
    In the present study we found that Mollugin exhibited cytotoxicity on various cancer models. The suppression of cell viability was due to the induction of mitochondria apoptosis. In addition, the presence of autophagic hallmarks was observed in Mollugin-treated cells. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of Mollugin. Further experiments demonstrated that phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) and extracellular regulated protein kinases (ERK) signaling pathways participated in Mollugin-induced autophagy and apoptosis.
    Together, these findings support further studies of Mollugin as candidate for treatment of human cancer cells.
    Phytomedicine. 2015 Jan 15;22(1):27-35.
    Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo.[Pubmed: 25636867]
    Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders.
    In this study, we investigated the effects of the naphthohydroquinone Mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3β and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin β3, cathepsin K, and ICAM-1. Furthermore, mice treated with Mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs.
    Consequently, these results suggested that Mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.
    Mollugin Description
    Source: The roots of Rubia cordifolia L.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Batatasin III

    Catalog No: CFN92689
    CAS No: 56684-87-8
    Price: $368/5mg
    2-Hydroxy-3-methoxybenzoic acid gl...

    Catalog No: CFN89113
    CAS No: 172377-87-6
    Price: $268/5mg
    Pinoresinol 4-O-beta-D-glucopyrano...

    Catalog No: CFN97180
    CAS No: 69251-96-3
    Price: $298/20mg
    6''-O-acetylsaikosaponin A

    Catalog No: CFN95086
    CAS No: 64340-46-1
    Price: $268/10mg
    Sophoraflavanone G

    Catalog No: CFN92005
    CAS No: 97938-30-2
    Price: $138/20mg

    Catalog No: CFN95018
    CAS No: 28383-41-7
    Price: $288/5mg

    Catalog No: CFN95091
    CAS No: 168035-01-6
    Price: $288/5mg

    Catalog No: CFN89019
    CAS No: 128420-44-0
    Price: $288/10mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.5174 mL 17.5871 mL 35.1741 mL 70.3482 mL 87.9353 mL
    5 mM 0.7035 mL 3.5174 mL 7.0348 mL 14.0696 mL 17.5871 mL
    10 mM 0.3517 mL 1.7587 mL 3.5174 mL 7.0348 mL 8.7935 mL
    50 mM 0.0703 mL 0.3517 mL 0.7035 mL 1.407 mL 1.7587 mL
    100 mM 0.0352 mL 0.1759 mL 0.3517 mL 0.7035 mL 0.8794 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Kinase Assay:
    Biol Pharm Bull. 2013;36(3):399-406. Epub 2013 Jan 11.
    Mollugin inhibits the inflammatory response in lipopolysaccharide-stimulated RAW264.7 macrophages by blocking the Janus kinase-signal transducers and activators of transcription signaling pathway.[Pubmed: 23318249]
    Mollugin, a kind of naphthohydroquinone, is a major constituent isolated from Rubia cordifolia L. and demonstrated to possess anti-inflammatory activity in recent reports. However, the effects and mechanism of action of Mollugin in inflammation have not been fully defined. The present study was therefore designed to investigate whether Mollugin suppresses the inflammatory response in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages.
    Mollugin attenuated the LPS-induced expression of nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin (IL)-1β and IL-6 but augmented the expression of tumor necrosis factor (TNF)-α. Mollugin did not inhibit the degradation of inhibitory kappa B (IκB)-α or the nuclear translocation of p65 nuclear factor-kappa B (NF-κB) but rather enhanced the phosphorylation of p65 subunits evoked by LPS. Mollugin did not inhibit the phosphorylation of extracellular-signal-related kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) 1/2 either. Mollugin significantly reduced the LPS-mediated phosphorylation of Janus kinase (JAK) 2, signal transducers and activators of transcription (STAT) 1 and STAT3. Molecular docking analysis showed that Mollugin binds to JAK2 in a manner similar to that of AG490, a specific JAK2 inhibitor.
    We conclude that Mollugin may be a JAK2 inhibitor and inhibits LPS-induced inflammatory responses by blocking the activation of the JAK-STAT pathway.
    Cell Research:
    J Cell Physiol. 2013 May;228(5):1087-97.
    Mollugin inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells.[Pubmed: 23065756]
    Mollugin is a naphthohydroquine found in the roots of Rubia cordifolia, and has been reported to have a variety of biological activities, including anti-inflammatory and apoptotic effects. In the present study, we investigated the molecular mechanisms by which Mollugin exerts anti-tumor effect in HER2-overexpressing cancer cells.
    Our results showed that Mollugin exhibited potent inhibitory effects on cancer cell proliferation, especially in HER2-overexpressing SK-BR-3 human breast cancer cells and SK-OV-3 human ovarian cancer cells in a dose- and time-dependent manner without affecting immortalized normal mammary epithelial cell line MCF-10A. Furthermore, we found that a blockade of Akt/SREBP-1c signaling through Mollugin treatment significantly reduced FAS expression and subsequently suppressed cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Mollugin treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level, potentially in part through suppression of NF-κB activation. The combination of Mollugin with a MEK1/2 inhibitor may be required in order to achieve optimal efficacy in HER2-overexpressing cancers. These data provide evidence that Mollugin inhibits proliferation and induces apoptosis in HER2-overexpressing cancer cells by blocking expression of the FAS gene through modulation of a HER2/Akt/SREBP-1c signaling pathway.
    Our findings suggest that Mollugin is a novel modulator of the HER2 pathway in HER2-overexpressing cancer cells with a potential role in the treatment and prevention of human breast and ovarian cancer with HER2 overexpression.
    Biomed Res Int. 2013;2013:210604.
    Involvement of Nrf2-mediated upregulation of heme oxygenase-1 in mollugin-induced growth inhibition and apoptosis in human oral cancer cells.[Pubmed: 23738323]
    Although previous studies have shown that Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L. (Rubiaceae), exhibits antitumor effects, its biological activity in oral cancer has not been reported.
    We thus investigated the effects and putative mechanism of apoptosis induced by Mollugin in human oral squamous cell carcinoma cells (OSCCs). Results show that Mollugin induces cell death in a dose-dependent manner in primary and metastatic OSCCs. Mollugin-induced cell death involved apoptosis, characterized by the appearance of nuclear shrinkage, flow cytometric analysis of sub-G1 phase arrest, and annexin V-FITC and propidium iodide staining. Western blot analysis and RT-PCR revealed that Mollugin suppressed activation of NF- κ B and NF- κ B-dependent gene products involved in antiapoptosis (Bcl-2 and Bcl-xl), invasion (MMP-9 and ICAM-1), and angiogenesis (FGF-2 and VEGF). Furthermore, Mollugin induced the activation of p38, ERK, and JNK and the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2). Mollugin-induced growth inhibition and apoptosis of HO-1 were reversed by an HO-1 inhibitor and Nrf2 siRNA.
    Collectively, this is the first report to demonstrate the effectiveness of Mollugin as a candidate for a chemotherapeutic agent in OSCCs via the upregulation of the HO-1 and Nrf2 pathways and the downregulation of NF- κ B.