• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    CAS No. 548-03-8 Price
    Catalog No.CFN93055Purity>=98%
    Molecular Weight506.46Type of CompoundQuinones
    FormulaC30H18O8Physical DescriptionPowder
    Download     COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • National Cancer Institute (USA)
  • Universidad de Buenos Aires (Argentina)
  • Northeast Normal University Chan... (China)
  • Indian Institute of Science (India)
  • Kyushu University (Japan)
  • University Medical Center Mainz (Germany)
  • Texas A&M University (USA)
  • University of Indonesia (Indonesia)
  • University of Hull (United Kingdom)
  • Univerzita Karlova v Praze (Czech Republic)
  • Wroclaw Medical University (Poland)
  • More...
  • Package
    Featured Products
    3-O-Feruloylquinic acid

    Catalog No: CFN92393
    CAS No: 1899-29-2
    Price: $488/5mg
    Mulberroside F

    Catalog No: CFN90794
    CAS No: 193483-95-3
    Price: $398/10mg

    Catalog No: CFN92003
    CAS No: 34981-26-5
    Price: $118/20mg

    Catalog No: CFN98509
    CAS No: 5928-25-6
    Price: $228/20mg
    Ginsenoside F4

    Catalog No: CFN90757
    CAS No: 181225-33-2
    Price: $358/10mg
    Biological Activity
    Description: Protohypericin exhibits photocytotoxicity.
    In vitro:
    Planta Med. 1999 Dec;65(8):719-22.
    Photocytotoxicity of protohypericin after photoconversion to hypericin.[Pubmed: 10630113]
    In the present study, Protohypericin was synthesised in order to compare its intrinsic photocytotoxicity with that of hypericin.
    The experimental work was performed in specific filtered light conditions that prevented both an unintended photoconversion of Protohypericin and photosensitization of the cells. Assessing the photocytotoxicity as a function of irradiation time, it was found that the photocytotoxicity of both compounds converged after a long irradiation time (i.e., 15 min), while the difference between the photocytotoxicities was maximal after a short irradiation time (i.e., 1 min).
    Since this could not be accounted for by a redistribution of Protohypericin during irradiation, and the different irradiation times corresponded to different degrees of photoconversion of Protohypericin into hypericin, the results clearly suggest that Protohypericin exhibits intrinsically a dramatically lower photoactivity as compared to hypericin.
    J AOAC Int. 2005 Nov-Dec;88(6):1607-12.
    Simultaneous determination of protopseudohypericin, pseudohypericin, protohypericin, and hypericin without light exposure.[Pubmed: 16526439 ]
    St. John's wort products are commonly standardized to total naphthodianthrones and hyperforin. Determination of these marker compounds is complicated because of the photochemistry of the naphthodianthrones pseudohypericin and hypericin and the instability of hyperforin in solution.
    Protopseudohypericin and Protohypericin have been identified as naturally occurring naphthodianthrones and, when exposed to light, they are converted into pseudohypericin and hypericin, respectively. However, exposure to light and the resulting naphthodianthrone free-radical reactions oxidize hyperforin. A mathematical relationship between the response of the proto compound and the resulting naphthodianthrone can be established by comparing the analytical response of the proto compound in a solution protected from light with the increase in the analytical response of naphthodianthrone in the same solution after exposure to light. By mathematically converting the proto compounds to their respective products, exposure to light can be avoided while still including proto compounds in a single assay.
    The method presented here details the reporting of all significant naphthodianthrones, including protopseudohypericin and Protohypericin, without exposure to light. This approach includes the benefits of improved naphthodianthrone precision and protection of hyperforin from oxidation.
    In vivo:
    J Drug Target. 2015 Jun;23(5):417-26.
    Radiopharmaceutical evaluation of (131)I-protohypericin as a necrosis avid compound.[Pubmed: 25655506 ]
    Hypericin is a necrosis avid agent useful for nuclear imaging and tumor therapy. Protohypericin, with a similar structure to hypericin except poorer planarity, is the precursor of hypericin.
    In this study, we aimed to investigate the impact of this structural difference on self-assembly, and evaluate the necrosis affinity and metabolism in the rat model of reperfused hepatic infarction. Protohypericin appeared less aggregative in solution compared with hypericin by fluorescence analysis. Biodistribution data of (131)I-Protohypericin showed the percentage of injected dose per gram of tissues (%ID/g) increased with time and reached to the maximum of 7.03 at 24 h in necrotic liver by gamma counting. The maximum ratio of target/non-target tissues was 11.7-fold in necrotic liver at 72 h. Pharmacokinetic parameters revealed that the half-life of (131)I-Protohypericin was 14.9 h, enabling a long blood circulation and constant retention in necrotic regions. SPECT-CT, autoradiography, and histological staining showed high uptake of (131)I-Protohypericin in necrotic tissues.
    These results suggest that (131)I-Protohypericin is a promising necrosis avid compound with a weaker aggregation tendency compared with hypericin and it may have a broad application in imaging and oncotherapy.
    Protohypericin Description
    Source: The herbs of Hypericum perforatum L.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds

    Catalog No: CFN92222
    CAS No: 41060-15-5
    Price: $128/20mg
    Bryonamide A

    Catalog No: CFN91056
    CAS No: 75268-14-3
    Price: $268/5mg

    Catalog No: CFN90838
    CAS No: 733-40-4
    Price: $388/10mg

    Catalog No: CFN90839
    CAS No: 52250-35-8
    Price: $218/10mg

    Catalog No: CFN97566
    CAS No: 99-18-3
    Price: $223/5mg
    Epimedin K

    Catalog No: CFN95019
    CAS No: 174286-13-6
    Price: $288/5mg

    Catalog No: CFN90742
    CAS No: 510-77-0
    Price: $318/10mg
    Picrasidine I

    Catalog No: CFN99019
    CAS No: 100234-59-1
    Price: $368/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 1.9745 mL 9.8724 mL 19.7449 mL 39.4898 mL 49.3622 mL
    5 mM 0.3949 mL 1.9745 mL 3.949 mL 7.898 mL 9.8724 mL
    10 mM 0.1974 mL 0.9872 mL 1.9745 mL 3.949 mL 4.9362 mL
    50 mM 0.0395 mL 0.1974 mL 0.3949 mL 0.7898 mL 0.9872 mL
    100 mM 0.0197 mL 0.0987 mL 0.1974 mL 0.3949 mL 0.4936 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Cell Research:
    Int J Pharm. 1999 Oct 15;188(1):81-6.
    In vitro transport and uptake of protohypericin and hypericin in the Caco-2 model.[Pubmed: 10528085]
    The intestinal absorption characteristics of Protohypericin, a protonaphthodianthrone present in Hypericum extract, were studied and compared with those of hypericin. The Caco-2 model was used as a model of the intestinal mucosa to assess transepithelial transport and cell uptake.
    The experimental work was performed in specific light conditions that prevented both the photoconversion of Protohypericin into hypericin and the photosensitization of the cells. Following application of the individual compounds (80-200 microM) to the apical side of the monolayers, the appearance in the basolateral compartment was found to be very low (<0.5%/5 h), but was comparable for both compounds. A lag-time of 2-3 h was observed, suggesting gradual saturation of binding sites on the membrane or inside the cells. Uptake experiments of Protohypericin and hypericin by Caco-2 cells revealed a very significant cellular accumulation (4-8%); uptake was characterised by saturation after 3 h.
    The findings of this study suggest that Protohypericin has comparable absorption characteristics as hypericin and may contribute to the beneficial effect of Hypericum extract after oral dosing.