Info: Read More
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • How to Order
  • Delivery time
  • Science | Nature | Cell | View More
    Natural Products
    Fraxinellone
    Information
    CAS No. 28808-62-0 Price $118 / 20mg
    Catalog No.CFN99782Purity>=98%
    Molecular Weight232.28Type of CompoundSesquiterpenoids
    FormulaC14H16O3Physical DescriptionWhite powder
    Download Manual    COA    MSDS    SDFSimilar structuralComparison (Web)  (SDF)
    Citing Use of our Products
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    According to end customer requirements, ChemFaces provide solvent format. This solvent format of product intended use: Signaling Inhibitors, Biological activities or Pharmacological activities.
    Size /Price /Stock 10 mM * 1 mL in DMSO / $34.9 / In-stock
    Other Packaging *Packaging according to customer requirements(100uL/well, 200uL/well and more), and Container use Storage Tube With Screw Cap
    Our products had been exported to the following research institutions and universities, And still growing.
  • The Institute of Cancer Research (United Kingdom)
  • Instytut Nawozów Sztucznych w ... (Poland)
  • China Medical University (Taiwan)
  • Amity University (India)
  • Griffith University (Australia)
  • Universidad de La Salle (Mexico)
  • Lodz University of Technology (Poland)
  • Warszawski Uniwersytet Medyczny (Poland)
  • Institute of Chinese Materia Me... (China)
  • Chungnam National University (Korea)
  • University of Madras (India)
  • More...
  • Package
    Featured Products
    Morusin

    Catalog No: CFN97083
    CAS No: 62596-29-6
    Price: $128/20mg
    Cryptochlorogenic acid

    Catalog No: CFN99117
    CAS No: 905-99-7
    Price: $128/20mg
    3,5-Di-O-caffeoylquinic acid methy...

    Catalog No: CFN90857
    CAS No: 159934-13-1
    Price: $388/5mg
    Platycoside M1

    Catalog No: CFN92267
    CAS No: 917482-67-8
    Price: $468/5mg
    3-Epioleanolic acid

    Catalog No: CFN92068
    CAS No: 25499-90-5
    Price: $388/10 mg
    Linderalactone

    Catalog No: CFN99761
    CAS No: 728-61-0
    Price: $198/20mg
    Ginsenoside Rh3

    Catalog No: CFN99972
    CAS No: 105558-26-7
    Price: $218/5mg

    Fraxinellone

    Fraxinellone
    Product Name Fraxinellone
    CAS No.: 28808-62-0
    Catalog No.: CFN99782
    Molecular Formula: C14H16O3
    Molecular Weight: 232.28 g/mol
    Purity: >=98%
    Type of Compound: Sesquiterpenoids
    Physical Desc.: White powder
    Targets: NOS | IL Receptor | gp120/CD4 | COX | NF-kB | IkB | ERK | Calcium Channel | NO | JNK | PGE | p65 | p38MAPK | Bcl-2/Bax | Antifection | IKK
    Source: The root barks of Dictamnus dasycarpus Turcz.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Price: $118 / 20mg
    Inquire / Order: manager@chemfaces.com
    Technical Inquiries: service@chemfaces.com
    Tel: +86-27-84237783
    Fax: +86-27-84254680

    Address:
    1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
  • Korean Journal of Pharmacognosy2018, 49(3):270-277
  • Phytomedicine.2019, 56:48-56
  • Cell Mol Biol(Noisy-le-grand)2019, 65(7):77-83
  • Front Neurosci.2019, 13:1091
  • J Food Biochem.2019, 43(9):e12970
  • Food Chem.2020, 313:126079
  • J Chromatogr A.2017, 1518:46-58
  • Food Funct.2020, 10.1039
  • Ulm University Medical Center2020, doi: 10.18725.
  • Plant Cell,Tissue & Organ Culture2016, 127(1):115-121
  • Related Screening Libraries
    Size /Price /Stock 10 mM * 100 uL in DMSO / Inquiry / In-stock
    10 mM * 1 mL in DMSO / Inquiry / In-stock
    Related Libraries
  • Anti-inflammatory Compound Library
  • Neuroprotection Compound Library
  • Antibacterial Compound Library
  • Hepatoprotective Compound Library
  • Insecticides Compound Library
  • Vasorelaxation Compound Library
  • Sesquiterpenoids Compound Library
  • PGE Inhibitor Library
  • p65 Inhibitor Library
  • p38MAPK Inhibitor Library
  • NOS Inhibitor Library
  • NO Inhibitor Library
  • NF-kB Inhibitor Library
  • JNK Inhibitor Library
  • IL Receptor Inhibitor Library
  • IKK Inhibitor Library
  • IkB Inhibitor Library
  • gp120/CD4 Inhibitor Library
  • ERK Inhibitor Library
  • COX Inhibitor Library
  • Calcium Channel Inhibitor Library
  • Bcl-2/Bax Inhibitor Library
  • Antifection Inhibitor Library
  • Biological Activity
    Description: Fraxinellone is a selective blocker of voltage-dependent Ca2+ channel, which possesses antimicrobial, anti-inflammatory, neuroprotective and vasorelaxing activities, Fraxinellone exhibits a variety of insecticidal activities including feeding-deterrent activity, inhibition of growth, and larvicidal activity. It inhibited the production of iNOS, COX-2, NF-kappa B, and PGE(2).
    Targets: NOS | IL Receptor | gp120/CD4 | COX | NF-kB | IkB | ERK | Calcium Channel | NO | JNK | PGE | p65 | p38MAPK | Bcl-2/Bax | Antifection | IKK
    In vitro:
    Biochem Pharmacol. 2009 Jun 1;77(11):1717-24.
    Selective triggering of apoptosis of concanavalin A-activated T cells by fraxinellone for the treatment of T-cell-dependent hepatitis in mice.[Pubmed: 19428326 ]
    Selectively inducing apoptosis of activated T cells is essential for the clearance of pathogenic injurious cells and subsequent efficient resolution of inflammation. However, few chemicals have been reported to trigger apoptosis of activated T cells in the treatment of hepatitis without affecting quiescent T cells.
    CONCLUSIONS:
    In the present study, we found that Fraxinellone, a small natural compound isolated from the root bark of Dictamnus dasycarpus, selectively facilitated apoptosis of concanavalin A (Con A)-activated CD4(+) T cells rather than those non-activated, by disrupting the mitochondrial transmembrane potential, decreasing the ratio of Bcl-2/Bax, and increasing cytochrome c release from the mitochondria to the cytosol. The enhancement in Fas expression and caspase-8 activity, truncation of Bid, and down-regulation of anti-apoptotic cellular FLICE-inhibitory protein expression by Fraxinellone also suggested the participation of an extrinsic apoptosis pathway. Furthermore, Fraxinellone significantly alleviated Con A-induced T-cell-dependent hepatitis in mice, which was closely associated with reduced serum transaminases, pro-inflammatory cytokines, and pathologic parameters. Consistent with the in vitro results, Fraxinellone dramatically induced apoptosis of activated peripheral CD4(+) T cells in vivo, consequently resulting in less CD4(+) T-cell activation and infiltration to the liver.
    CONCLUSIONS:
    These results strongly suggest Fraxinellone might be a potential leading compound useful in treating T-cell-mediated liver disorders in humans.
    Molecules. 2013 Mar 1;18(3):2754-62.
    Insecticidal and feeding deterrent effects of fraxinellone from Dictamnus dasycarpus against four major pests.[Pubmed: 23455666]
    Fraxinellone, a well-known and significant naturally occurring compound isolated from Meliaceae and Rutaceae spp. has been widely used as a drug for the treatment of tumors. On the other hand, Fraxinellone exhibited a variety of insecticidal activities including feeding-deterrent activity, inhibition of growth, and larvicidal activity.
    METHODS AND RESULTS:
    The present study focused on the antifeedant and larvicidal activities of Fraxinellone against the larvae of Lepidoptera, including Mythimna separata, Agrotis ypsilon, Plutella xylostella, and one kind of sanitary pest, Culux pipiens pallens. Meanwhile, the ovicidal activities and the effects of Fraxinellone on the larval development of M. separata were also observed. The LC50 values of Fraxinellone against 3rd instar larvae of M. separata, 2nd instar larvae of P. xylostella and 4th instar larvae of C. pipiens pallens were 15.95/6.43/3.60 × 10-2 mg mL-1, and its AFC50 values against 5th instar larvae of M. separata, 2nd instar larvae of P. xylostella and 2nd instar larvae of A. ypsilon were 10.73/7.93/12.58 mg mL-1, respectively.
    CONCLUSIONS:
    Compared with the control group, Fraxinellone obviously inhibited the pupation rate and the growth of M. separata. Once M. separata was treated with Fraxinellone at concentrations of 5.0, 10.0, and 20.0 mg mL-1, respectively, the stages from the larvae to adulthood and the egg hatching duration were prolonged to 1/2/3, and 4/3/4 days, respectively. Additionally, Fraxinellone strongly inhibited the development rate and the egg hatch proportion of M. separata.
    In vivo:
    Toxicol Appl Pharmacol. 2014 Oct 13;281(1):146-156.
    Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone.[Pubmed: 25448682]
    Inflammatory bowel disease (IBD) affects millions of people worldwide. Although the etiology of this disease is uncertain, accumulating evidence indicates a key role for the activated mucosal immune system. In the present study, we examined the effects of the natural compound Fraxinellone on dextran sulfate sodium (DSS)-induced colitis in mice, an animal model that mimics IBD.
    METHODS AND RESULTS:
    Treatment with Fraxinellone significantly reduced weight loss and diarrhea in mice and alleviated the macroscopic and microscopic signs of the disease. In addition, the activities of myeloperoxidase and alkaline phosphatase were markedly suppressed, while the levels of glutathione were increased in colitis tissues following Fraxinellone treatment. This compound also decreased the colonic levels of interleukin (IL)-1β, IL-6, IL-18 and tumor necrosis factor (TNF)-α in a concentration-dependent manner. These effects of Fraxinellone in mice with experimental colitis were attributed to its inhibition of CD11b(+) macrophage infiltration. The mRNA levels of macrophage-related molecules in the colon, including intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), were also markedly inhibited following Fraxinellone treatment. The results from in vitro assays showed that Fraxinellone significantly reduced lipopolysaccharide (LPS)-induced production of nitric oxide (NO), IL-1β and IL-18 as well as the activity of iNOS in both THP-1 cells and mouse primary peritoneal macrophages. The mechanisms responsible for these effects were attributed to the inhibitory role of Fraxinellone in NF-κB signaling and NLRP3 inflammasome activation.
    CONCLUSIONS:
    Overall, our results support Fraxinellone as a novel drug candidate in the treatment of colonic inflammation.
    Fraxinellone Description
    Source: The root barks of Dictamnus dasycarpus Turcz.
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    ChemFaces New Products and Compounds
    Bruceine E

    Catalog No: CFN89340
    CAS No: 21586-90-3
    Price: $318/20mg
    Cryptochlorogenic acid

    Catalog No: CFN99117
    CAS No: 905-99-7
    Price: $128/20mg
    Diosmin Impurity 5

    Catalog No: CFN95311
    CAS No: 122087-66-5
    Price: $318/10mg
    19-O-beta-D-carboxyglucopyranosyl-...

    Catalog No: CFN95217
    CAS No: 1011714-20-7
    Price: $318/5mg
    Macrophylloside D

    Catalog No: CFN95113
    CAS No: 179457-69-3
    Price: $318/10mg
    Ebracteolata cpd B

    Catalog No: CFN92882
    CAS No: 83459-37-4
    Price: $268/10mg
    2''-O-Galloylquercitrin

    Catalog No: CFN95041
    CAS No: 80229-08-9
    Price: $418/5mg
    Pueroside A

    Catalog No: CFN95177
    CAS No: 100692-52-2
    Price: $318/5mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 4.3051 mL 21.5257 mL 43.0515 mL 86.103 mL 107.6287 mL
    5 mM 0.861 mL 4.3051 mL 8.6103 mL 17.2206 mL 21.5257 mL
    10 mM 0.4305 mL 2.1526 mL 4.3051 mL 8.6103 mL 10.7629 mL
    50 mM 0.0861 mL 0.4305 mL 0.861 mL 1.7221 mL 2.1526 mL
    100 mM 0.0431 mL 0.2153 mL 0.4305 mL 0.861 mL 1.0763 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Protocol
    Kinase Assay:
    Naunyn Schmiedebergs Arch Pharmacol. 1992 Mar;345(3):349-55.
    Vasorelaxing effect in rat thoracic aorta caused by fraxinellone and dictamine isolated from the Chinese herb Dictamnus dasycarpus Turcz: comparison with cromakalim and Ca2+ channel blockers.[Pubmed: 1377790]
    The components of Dictamnus dasycarpus Turcz were tested for their vasorelaxing effect on the rat aorta, and Fraxinellone and dictamine were shown to be effective vasorelaxants.
    METHODS AND RESULTS:
    In high K+ (60 mmol/l) medium, Ca2+ (0.03 to 3 mmol/l)-induced vasoconstriction was inhibited concentration-dependently by both agents. The IC50 for Fraxinellone and dictamine were calculated to be about 25 mumol/l and 15 mumol/l (for Ca2+ concentration of 1 mmol/l), respectively. Cromakalim (0.2-10 mumol/l) relaxed aortic rings precontracted with 15 but not 60 mmol/l of K+. Fraxinellone and verapamil were more potent and effective in producing relaxation in 60 mmol/l than in 15 mmol/l K(+)-induced contraction. However, dictamine was more potent in producing relaxation in 15 mmol/l K(+)-induced contraction. Nifedipine (1 mumol/l), dictamine (100 mumol/l) and Fraxinellone (100 mumol/l) relaxed the aortic contraction caused by KCl or Bay K 8644. The tonic contraction elicited by noradrenaline (NA, 3 mumol/l) was also relaxed by dictamine (500 mumol/l), but not by Fraxinellone (500 mumol/l) in the nifedipine (1 mumol/l)-treated aorta. This relaxing effect of dictamine persisted in endothelium-denuded aorta. Glibenclamide (10 mumol/l) shifted the concentration-relaxation curve of cromakalim, but not that of dictamine, to the right in rat aortic rings precontracted with NA. Dictamine (500 mumol/l) did not affect tonic contraction of NA which are reduced by H-7 (1 mumol/l) in Ca(2+)-depleted medium.
    CONCLUSIONS:
    In conclusion, Fraxinellone is a selective blocker of voltage-dependent Ca2+ channel, while dictamine relaxed the rat aorta by suppressing the Ca2+ influx through both voltage-dependent and receptor-operated Ca2+ channels.
    Cell Research:
    Biol Pharm Bull. 2009 Jun;32(6):1062-8.
    Fraxinellone inhibits lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by negatively regulating nuclear factor-kappa B in RAW 264.7 macrophages cells.[Pubmed: 19483316]
    Fraxinellone is formed by the natural degradation of limonoids isolated from the root bark of Dictamnus dasycarpus. Fraxinellone has been reported to possess neuroprotective and vasorelaxing activities, but the effects and the mechanism of Fraxinellone in inflammation have not been fully characterized.
    METHODS AND RESULTS:
    In the present study, the anti-inflammatory effect of Fraxinellone was evaluated in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Fraxinellone was found to inhibit LPS-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production, and to reduce the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in a dose-dependent manner. Furthermore, Fraxinellone significantly attenuated LPS-induced DNA binding activity and the transcription activity of nuclear factor-kappa B (NF-kappaB). Consistent with these findings, pretreatment with Fraxinellone significantly suppressed the LPS-stimulated phosphorylation of inhibitory kappa B-alpha (IkappaB-alpha) and the subsequent translocation of p65 to the nucleus. Fraxinellone also suppressed the IkappaB kinase (IKK) activity and the phosphorylation of extracellular-signal-related kinase (ERK1/2), whereas the phosphorylations of Jun N-terminal kinase (JNK1/2) and p38 were unaffected.
    CONCLUSIONS:
    These results suggest that the anti-inflammatory properties of Fraxinellone are related to the down-regulations of iNOS and COX-2 due to NF-kappaB inhibition through the negative regulations of IKK and ERK1/2 phosphorylations in RAW 264.7 cells.
    Morusin

    Catalog No: CFN97083
    CAS No: 62596-29-6
    Price: $128/20mg
    Cryptochlorogenic acid

    Catalog No: CFN99117
    CAS No: 905-99-7
    Price: $128/20mg
    3,5-Di-O-caffeoylquinic acid methy...

    Catalog No: CFN90857
    CAS No: 159934-13-1
    Price: $388/5mg
    Platycoside M1

    Catalog No: CFN92267
    CAS No: 917482-67-8
    Price: $468/5mg
    3-Epioleanolic acid

    Catalog No: CFN92068
    CAS No: 25499-90-5
    Price: $388/10 mg
    Linderalactone

    Catalog No: CFN99761
    CAS No: 728-61-0
    Price: $198/20mg
    Ginsenoside Rh3

    Catalog No: CFN99972
    CAS No: 105558-26-7
    Price: $218/5mg