• ChemFaces is a professional high-purity natural products manufacturer.
  • Product Intended Use
  • 1. Reference standards
  • 2. Pharmacological research
  • 3. Inhibitors
  • Home
  • Natural Products
  • Bioactive
  • Screening Libraries
  • Hot Products
  • Plant Catalog
  • Customer Support
  • Product Use Citation
  • About Us
  • Contact Us
  • Natural Products
    Nuciferine
    Information
    CAS No. 475-83-2 Price $40 / 20mg
    Catalog No.CFN99733Purity>=98%
    Molecular Weight295.38Type of CompoundAlkaloids
    FormulaC19H21NO2Physical DescriptionWhite powder
    Download Manual    COA    MSDSSimilar structuralComparison (Web)
    How to Order
    Orders via your E-mail:

    1. Product number / Name / CAS No.
    2. Delivery address
    3. Ordering/billing address
    4. Contact information
    Sent to Email: info@chemfaces.com
    Contact Us
    Order & Inquiry & Tech Support

    Tel: (0086)-27-84237683
    Fax: (0086)-27-84254680
    E-mail: manager@chemfaces.com
    Address: No. 83, CheCheng Rd., WETDZ, Wuhan, Hubei 430056, PRC
    Delivery time
    Delivery & Payment method

    1. Usually delivery time: Next day delivery by 9:00 a.m. Order now

    2. We accept: Wire transfer & Credit card & Paypal & Western Union
    * Packaging according to customer requirements(5mg, 10mg, 20mg and more). We shipped via FedEx, DHL, UPS, EMS and others courier.
    Our products had been exported to the following research institutions and universities, And still growing.
  • Wageningen University (Netherlands)
  • Regional Crop Research Institute (Korea)
  • Charles Sturt University (Denmark)
  • Wroclaw Medical University (Poland)
  • Vin?a Institute of Nuclear Scien... (Serbia)
  • University of Madras (India)
  • VIB Department of Plant Systems ... (Belgium)
  • CSIRO - Agriculture Flagship (Australia)
  • Chulalongkorn University (Thailand)
  • Technical University of Denmark (Denmark)
  • University of Illinois at Chicago (USA)
  • More...
  • Package
    Featured Products
    Tenuifolin

    Catalog No: CFN98157
    CAS No: 20183-47-5
    Price: $118/20mg
    Glycitin

    Catalog No: CFN99105
    CAS No: 40246-10-4
    Price: $70/20mg
    Decursin

    Catalog No: CFN98509
    CAS No: 5928-25-6
    Price: $228/20mg
    Deapi-platycodin D3

    Catalog No: CFN92269
    CAS No: 67884-05-3
    Price: $388/5mg
    Isolinderalactone

    Catalog No: CFN99762
    CAS No: 957-66-4
    Price: $238/5mg
    Biological Activity
    Description: Nuciferine possesses anti-diabetic, anti-obesity, anti-hyperlipidemia, anti-hypotensive, anti-arrhythmic, vasorelaxant, and insulin secretagogue activities. Nuciferine may be potential for the prevention and treatment of hyperuricemia with kidney inflammation. It inhibited tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer.
    Targets: GLUT | TLR | NF-kB | IL Receptor | NOS | NO | Serine | Calcium Channel | TNF-α | Bcl-2/Bax | VEGFR
    In vitro:
    Br J Pharmacol. 2014 Nov 19.
    Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms.[Pubmed: 25409881]
    Nuciferine, a constituent of lotus leaf, is an aromatic ring-containing alkaloid, with antioxidative properties. We hypothesize Nuciferine might affect vascular reactivity. This study aimed at determining the effects of Nuciferine on vasomotor tone and the underlying mechanism.
    METHODS AND RESULTS:
    Nuciferine-induced relaxations in rings of rat main mesenteric arteries were measured by wire myographs. Endothelial NOS (eNOS) was determined by immunoblotting. Intracellular NO production in HUVECs and Ca2+ level in both HUVECs and vascular smooth muscle cells (VSMCs) from rat mesenteric arteries were assessed by fluorescence imaging. Nuciferine induced relaxations in arterial segments pre-contracted by KCl or phenylephrine. Nuciferine-elicited arterial relaxations were reduced by removal of endothelium or by pretreatment with the eNOS inhibitor L-NAME or the NO-sensitive guanylyl cyclase inhibitor ODQ. In HUVECs, the phosphorylation of eNOS at Ser1177 and increase in cytosolic NO level induced by Nuciferine were mediated by extracellular Ca2+ influx. Under endothelium-free conditions, Nuciferine attenuated CaCl2 -induced contraction in Ca2+ -free depolarizing medium. In the absence of extracellular calcium, Nuciferine relieved the vasoconstriction induced by phenylephrine and the addition of CaCl2 . Nuciferine also suppressed Ca2+ influx in Ca2+ -free K+ -containing solution in VSMCs.
    CONCLUSIONS:
    Nuciferine has a vasorelaxant effect via both endothelium-dependent and -independent mechanisms. These results suggest that Nuciferine may have a therapeutic effect on vascular diseases associated with aberrant vasoconstriction.
    In vivo:
    PLoS One. 2013 May 15;8(5):e63770.
    Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters.[Pubmed: 23691094]
    Nuciferine is a major active aporphine alkaloid from the leaves of N. nucifera Gaertn that possesses anti-hyperlipidemia, anti-hypotensive, anti-arrhythmic, and insulin secretagogue activities. However, it is currently unknown whether Nuciferine can benefit hepatic lipid metabolism.
    METHODS AND RESULTS:
    In the current study, male golden hamsters were randomly divided into four groups fed a normal diet, a high-fat diet (HFD), or a HFD supplemented with Nuciferine (10 and 15 mg/kg·BW/day). After 8 weeks of intervention, HFD-induced increases in liver and visceral adipose tissue weight, dyslipidemia, liver steatosis, and mild necroinflammation in hamsters were analyzed. Nuciferine supplementation protected against HFD-induced changes, alleviated necroinflammation, and reversed serum markers of metabolic syndrome in hamsters fed a HFD. RT-PCR and western blot analyses revealed that hamsters fed a HFD had up-regulated levels of genes related to lipogenesis, increased free fatty acid infiltration, and down-regulated genes involved in lipolysis and very low density lipoprotein secretion. In addition, gene expression of cytochrome P4502E1 and tumor necrosis factor-α were also increased in the HFD group. Nuciferine supplementation clearly suppressed HFD-induced alterations in the expression of genes involved in lipid metabolism.
    CONCLUSIONS:
    Nuciferine supplementation ameliorated HFD-induced dyslipidemia as well as liver steatosis and injury. The beneficial effects of Nuciferine were associated with altered expression of hepatic genes involved in lipid metabolism.
    Nuciferine Description
    Source: The leaves of Nelumbo nucifera
    Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
    Storage: Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

    Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

    Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

    After receiving: The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
    Recent ChemFaces New Products and Compounds
    Lappaol F

    Catalog No: CFN95069
    CAS No: 69394-17-8
    Price: $368/10mg
    3,3',4',5,6,7,8-heptamethoxyflavon...

    Catalog No: CFN95021
    CAS No: 1178-24-1
    Price: $268/10mg
    Ganoderic acid L

    Catalog No: CFN95022
    CAS No: 102607-24-9
    Price: $413/5mg
    Ganoderic acid DM

    Catalog No: CFN99815
    CAS No: 173075-45-1
    Price: $592/5mg
    Isomucronulatol

    Catalog No: CFN90839
    CAS No: 52250-35-8
    Price: $218/10mg
    Withaferin A

    Catalog No: CFN91895
    CAS No: 5119-48-2
    Price: $368/10 mg
    Glicoricone

    Catalog No: CFN95063
    CAS No: 161099-37-2
    Price: $333/5mg
    Aristolochic acid D

    Catalog No: CFN90783
    CAS No: 17413-38-6
    Price: $448/10mg
    Recently, ChemFaces products have been cited in many studies from excellent and top scientific journals

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.

    PMID: 29328914

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.

    PMID: 29149595

    Scientific Reports 2017 Dec 11;7(1):17332.
    doi: 10.1038/s41598-017-17427-6.

    PMID: 29230013

    Molecules. 2017 Oct 27;22(11). pii: E1829.
    doi: 10.3390/molecules22111829.

    PMID: 29077044

    J Cell Biochem. 2018 Feb;119(2):2231-2239.
    doi: 10.1002/jcb.26385.

    PMID: 28857247

    Phytomedicine. 2018 Feb 1;40:37-47.
    doi: 10.1016/j.phymed.2017.12.030.

    PMID: 29496173
    Calculate Dilution Ratios(Only for Reference)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.3855 mL 16.9273 mL 33.8547 mL 67.7094 mL 84.6367 mL
    5 mM 0.6771 mL 3.3855 mL 6.7709 mL 13.5419 mL 16.9273 mL
    10 mM 0.3385 mL 1.6927 mL 3.3855 mL 6.7709 mL 8.4637 mL
    50 mM 0.0677 mL 0.3385 mL 0.6771 mL 1.3542 mL 1.6927 mL
    100 mM 0.0339 mL 0.1693 mL 0.3385 mL 0.6771 mL 0.8464 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    Protocol
    Kinase Assay:
    J Ethnopharmacol. 2012 Jul 13;142(2):488-95.
    Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide.[Pubmed: 22633982 ]
    Several Asian plants are known for their anti-diabetic properties and produce alkaloids and flavonoids that may stimulate insulin secretion.
    METHODS AND RESULTS:
    Using Vietnamese plants (Nelumbo nucifera, Gynostemma pentaphyllum, Smilax glabra, and Stemona tuberosa), we extracted two alkaloids (neotuberostemonine, Nuciferine) and four flavonoids (astilbin, engeletin, smitilbin, and 3,5,3'-trihydroxy-7,4'-dimethoxyflavone), and studied their insulin stimulatory effects. Nuciferine, extracted from Nelumbo nucifera, stimulated both phases of insulin secretion in isolated islets, whereas the other compounds had no effect. The effect of Nuciferine was totally abolished by diazoxide and nimodipine, and diminished by protein kinase A and protein kinase C inhibition. Nuciferine and potassium had additive effects on insulin secretion. Nuciferine also stimulated insulin secretion in INS-1E cells at both 3.3 and 16.7 mM glucose concentrations. Compared with glibenclamide, Nuciferine had a stronger effect on insulin secretion and less beta-cell toxicity. However, Nuciferine did not compete with glibenclamide for binding to the sulfonylurea receptor.
    CONCLUSIONS:
    Among several compounds extracted from anti-diabetic plants, Nuciferine was found to stimulate insulin secretion by closing potassium-adenosine triphosphate channels, explaining anti-diabetic effects of Nelumbo nucifera.
    Cell Research:
    J Ethnopharmacol. 2015 May 13;165:83-93.
    Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer.[Pubmed: 25698245 ]
    The leaves of Nelumbo nucifera Gaertn are recorded in the earliest written documentation of traditional Chinese medicinal as "Ben Cao Gang Mu", a medicinal herb for blood clotting, dysentery and dizziness. Recently, Nuciferine (NF), one of N. nucifera Gaertn leaf extracts has been shown to possess several pharmacological properties, including anti-viral and anti-cancer. The aim of this study is to investigate the underlying molecular mechanism of the anti-cancer activity of NF in NSCLC progression induced by nicotine.
    METHODS AND RESULTS:
    NF significantly inhibited the proliferation of NSCLC cells in the presence of nicotine, suppressed the activity of Wnt/β-catenin signaling, enhanced the stabilization of Axin, and induced apoptosis. NF down-regulated the expression levels of β-catenin and its downstream targets including c-myc, cyclin D and VEGF-A. NF also decreased the ratio of Bcl-2/Bax, which may explain the pro-apoptosis effect of NF. In tumor xenograft nude mice, NF not only inhibited the growth of non-small cell lung cancer (NSCLC) cells, but also remarkably alleviated the injury induced by nicotine in liver function.
    CONCLUSIONS:
    NF has the remarkable effect to inhibit nicotine-induced NSCLC progression, which was due to its ability to reduce the activity of Wnt/β-catenin signaling. Thus, the work stated here emphasizes the importance of this traditional medicine and presents a potential novel alternative to NSCLC prevention and therapy.
    Animal Research:
    Eur J Pharmacol. 2015 Jan 15;747:59-70.
    Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice.[Pubmed: 25499818]

    METHODS AND RESULTS:
    Nuciferine, a major aporphine alkaloid of the leaves of Nelumbo nucifera, was found to decrease serum urate levels and improved kidney function, as well as inhibited system and renal interleukin-1β (IL-1β) secretion in potassium oxonate-induced hyperuricemic mice. Furthermore, Nuciferine reversed expression alteration of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette, subfamily G, membrane 2 (ABCG2), organic anion transporter 1 (OAT1), organic cation transporter 1 (OCT1), and organic cation/carnitine transporters 1/2 (OCTN1/2) in hyperuricemic mice. More importantly, Nuciferine suppressed renal activation of Toll-like receptor 4/myeloid differentiation factor 88/NF-kappaB (TLR4/MyD88/NF-κB) signaling and NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome to reduce serum and renal IL-1β levels in hyperuricemic mice with renal inflammation reduction. The anti-inflammatroy effect of Nuciferine was also confirmed in human proximal renal tubular epithelial cells (HK-2 cells) incubated with 4mg/dl uric acid for 24h.
    CONCLUSIONS:
    This study firstly reported the anti-hyperuricemic and anti-inflammatory effects of Nuciferine by regulating renal organic ion transporters and inflammatory signaling in hyperuricemia. These results suggest that a dietary supplement of Nuciferine rich in lotus leaf may be potential for the prevention and treatment of hyperuricemia with kidney inflammation.
    Structure Identification:
    J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Jun 15;961:20-8.
    A sensitive liquid chromatography-tandem mass spectrometry method for pharmacokinetics and tissue distribution of nuciferine in rats.[Pubmed: 24854711]
    Nuciferine is an important drug candidate for the treatment of obesity-related diseases. However, few investigations have been conducted about the pharmacokinetics and tissue distribution of Nuciferine to better understand its behavior and action mechanism in vivo.
    METHODS AND RESULTS:
    Thus, a sensitive and reliable liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) method was established and validated for the quantification of Nuciferine in rat plasma and tissue samples. The validated method was successfully applied to the pharmacokinetic and tissue distribution study of Nuciferine in rats. One-compartmental pharmacokinetic parameters indicated that Nuciferine had rapid distribution, extensive tissue uptake, and poor absorption into systemic circulation. The values of absolute bioavailability were (3.8±1.4)%, (4.2±1.3)% and (3.9±1.0)% after oral administration of 2.0, 5.0 and 10.0mg/kg Nuciferine and intravenous administration of 0.2mg/kg Nuciferine in rats. The results of the tissue distribution study suggested that Nuciferine was distributed into the brain, liver and adipose tissue after intravenous administration.
    CONCLUSIONS:
    In conclusion, the present study may provide a material basis for study of the pharmacological action of Nuciferine in the treatment of obesity, and meaningful insights into further study on dosage modification.